Injectivity of Gabor phase retrieval from lattice measurements

被引:14
|
作者
Grohs, Philipp [1 ,2 ,3 ]
Liehr, Lukas [1 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Austrian Acad Sci, Johann Radon Inst Appl & Computat Math, Altenbergstr 69, A-4040 Linz, Austria
[3] Univ Vienna, Res Network DataSci UniVie, Kolingasse 14-16, A-1090 Vienna, Austria
关键词
Phase retrieval; Spectrogram sampling; Gabor transform; Shift -invariant spaces; Lattice measurements; UNIQUENESS; RECONSTRUCTION; TRANSFORM;
D O I
10.1016/j.acha.2022.09.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish novel uniqueness results for the Gabor phase retrieval problem: if c : L2 (R) -+ L2(R2) denotes the Gabor transform then every f E L4[- 2c, c2 ] is determined up to a global phase by the values |c f (x, omega)| where (x, omega) are points on the lattice b-1Z x (2c)-1Z and b > 0 is an arbitrary positive constant. This for the first time shows that compactly-supported, complex-valued functions can be uniquely reconstructed from lattice samples of their spectrogram. Moreover, by making use of recent developments related to sampling in shift-invariant spaces by Grochenig, Romero and Stockler, we prove analogous uniqueness results for functions in shift-invariant spaces with Gaussian generator. Generalizations to nonuniform sampling are also presented. Finally, we compare our results to the situation where the considered signals are assumed to be real-valued. (c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:173 / 193
页数:21
相关论文
共 50 条
  • [41] Ill-conditionedness of discrete Gabor phase retrieval and a possible remedy
    Alaifari, Rima
    Wellershoff, Matthias
    2019 13TH INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2019,
  • [42] Phase retrieval for continuous Gabor frames on locally compact abelian groups
    Chuangxun Cheng
    Wen-Lung Lo
    Hailong Xu
    Banach Journal of Mathematical Analysis, 2021, 15
  • [43] Phase retrieval of microscope objects using the Wavelet-Gabor transform method from holographic filters
    Hernandez-Romo, Martin
    Padilla-Vivanco, Alfonso
    Kim, Myung K.
    Toxqui-Quitl, Carina
    CURRENT DEVELOPMENTS IN LENS DESIGN AND OPTICAL ENGINEERING XV, 2014, 9192
  • [44] Multifrequency Phase Retrieval for Antenna Measurements
    Knapp, Josef
    Paulus, Alexander
    Kornprobst, Jonas
    Siart, Uwe
    Eibert, Thomas F.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (01) : 488 - 501
  • [45] PHASE RETRIEVAL BY DIFFERENTIAL INTENSITY MEASUREMENTS
    GONSALVES, RA
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1987, 4 (01): : 166 - 170
  • [46] High Temporal Resolution Refractivity Retrieval from Radar Phase Measurements
    Nocelo Lopez, Ruben
    Santalla del Rio, Veronica
    REMOTE SENSING, 2018, 10 (06)
  • [47] Phase retrieval from local correlation measurements with fixed shift length
    Melnyk, Oleh
    Filbir, Frank
    Krahmer, Felix
    2019 13TH INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2019,
  • [48] Sparse Phase Retrieval from Short-Time Fourier Measurements
    Eldar, Yonina C.
    Sidorenko, Pavel
    Mixon, Dustin G.
    Barel, Shaby
    Cohen, Oren
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (05) : 638 - 642
  • [49] NUMERICAL OPTIMIZATION ALGORITHMS FOR WAVEFRONT PHASE RETRIEVAL FROM MULTIPLE MEASUREMENTS
    Li, Ji
    Zhou, Tie
    INVERSE PROBLEMS AND IMAGING, 2017, 11 (04) : 721 - 743
  • [50] Lower Lipschitz bounds for phase retrieval from locally supported measurements
    Iwen, Mark A.
    Merhi, Sami
    Perlmutter, Michael
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2019, 47 (02) : 526 - 538