Injectivity of Gabor phase retrieval from lattice measurements

被引:14
|
作者
Grohs, Philipp [1 ,2 ,3 ]
Liehr, Lukas [1 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Austrian Acad Sci, Johann Radon Inst Appl & Computat Math, Altenbergstr 69, A-4040 Linz, Austria
[3] Univ Vienna, Res Network DataSci UniVie, Kolingasse 14-16, A-1090 Vienna, Austria
关键词
Phase retrieval; Spectrogram sampling; Gabor transform; Shift -invariant spaces; Lattice measurements; UNIQUENESS; RECONSTRUCTION; TRANSFORM;
D O I
10.1016/j.acha.2022.09.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish novel uniqueness results for the Gabor phase retrieval problem: if c : L2 (R) -+ L2(R2) denotes the Gabor transform then every f E L4[- 2c, c2 ] is determined up to a global phase by the values |c f (x, omega)| where (x, omega) are points on the lattice b-1Z x (2c)-1Z and b > 0 is an arbitrary positive constant. This for the first time shows that compactly-supported, complex-valued functions can be uniquely reconstructed from lattice samples of their spectrogram. Moreover, by making use of recent developments related to sampling in shift-invariant spaces by Grochenig, Romero and Stockler, we prove analogous uniqueness results for functions in shift-invariant spaces with Gaussian generator. Generalizations to nonuniform sampling are also presented. Finally, we compare our results to the situation where the considered signals are assumed to be real-valued. (c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:173 / 193
页数:21
相关论文
共 50 条
  • [31] ROLE OF DIFFRACTION IN PHASE RETRIEVAL FROM INTENSITY MEASUREMENTS
    FOLEY, JT
    JALIL, MAA
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1983, 351 : 80 - 89
  • [32] Fast Phase Retrieval from Local Correlation Measurements
    Iwen, Mark A.
    Viswanathan, Aditya
    Wang, Yang
    SIAM JOURNAL ON IMAGING SCIENCES, 2016, 9 (04): : 1655 - 1688
  • [33] Gabor Phase Retrieval in the Generalized Paley-wiener Space
    Zhang, Qingyue
    Wu, Liping
    Guo, Zhenli
    Liu, Bei
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2024, 43 (01) : 470 - 494
  • [34] WIRTINGER FLOW ALGORITHMS FOR PHASE RETRIEVAL FROM BINARY MEASUREMENTS
    Kishore, Vinith
    Seelamantula, Chandra Sekhar
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5750 - 5754
  • [35] UNIQUENESS QUESTION IN PROBLEM OF PHASE RETRIEVAL FROM INTENSITY MEASUREMENTS
    DEVANEY, AJ
    CHIDLAW, R
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1978, 68 (10) : 1352 - 1354
  • [36] Non-Convex Phase Retrieval From STFT Measurements
    Bendory, Tamir
    Eldar, Yonina C.
    Boumal, Nicolas
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (01) : 467 - 484
  • [37] PHASE RETRIEVAL FROM A SET OF INTENSITY MEASUREMENTS - THEORY AND EXPERIMENT
    IVANOV, VY
    SIVOKON, VP
    VORONTSOV, MA
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1992, 9 (09): : 1515 - 1524
  • [38] Riemannian optimization for phase retrieval from masked Fourier measurements
    Huiping Li
    Song Li
    Advances in Computational Mathematics, 2021, 47
  • [39] Riemannian optimization for phase retrieval from masked Fourier measurements
    Li Huiping
    Li Song
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (06)
  • [40] Phase retrieval for continuous Gabor frames on locally compact abelian groups
    Cheng, Chuangxun
    Lo, Wen-Lung
    Xu, Hailong
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (02)