Riemannian optimization for phase retrieval from masked Fourier measurements

被引:0
|
作者
Huiping Li
Song Li
机构
[1] Zhejiang University,School of Mathematical Sciences
[2] Hangzhou Normal University,Department of Mathematics
来源
关键词
Phase retrieval; Riemannian optimization; Gradient descent algorithm; Conjugate gradient descent algorithm; Masked Fourier measurements; 15A29; 94A12; 94A20; 78A45; 41A29; 53B21; 90C26; 68Q25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the noisy phase retrieval problem under the measurements of Fourier transforms with complex random masks. Here two kinds of Riemannian optimization algorithms, namely, Riemannian gradient descent algorithm (RGrad) and Riemannian conjugate gradient descent algorithm (RCG), are presented to solve such problem from these special but widely used measurements in practical applications. Since the masked Fourier measurements are less random, we establish stable guarantees for signals by the truncated variants of RGrad and RCG, respectively. First of all, a good initialization is constructed by means of a truncated spectral method. Then we prove that a signal x∈ℂn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {x}\in \mathbb {C}^{n}$\end{document} can be recovered robustly to bounded noise through these two algorithms, provided that L=O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L= O(\log n)$\end{document} complex random masks are performed in the measurement process. This implies that the sample complexity is optimal up to a log factor, namely, O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(n\log n)$\end{document}. Particularly, each sequence generated by the truncated RGrad and RCG provably converges to the true solution at a geometric rate in the noiseless case. Finally, several empirical experiments are provided to show the effectiveness and stability of such two kinds of algorithms compared with Wirtinger Flow(WF) algorithm, for which provable guarantee has been set up for signals under masked Fourier measurements, provided that L=O(log4n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L= O(\log ^{4}n)$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] ROLE OF DIFFRACTION IN PHASE RETRIEVAL FROM INTENSITY MEASUREMENTS
    FOLEY, JT
    JALIL, MAA
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1983, 351 : 80 - 89
  • [42] Fast Phase Retrieval from Local Correlation Measurements
    Iwen, Mark A.
    Viswanathan, Aditya
    Wang, Yang
    SIAM JOURNAL ON IMAGING SCIENCES, 2016, 9 (04): : 1655 - 1688
  • [43] Complexity-guided Fourier phase retrieval from noisy data
    Butola, Mansi
    Rajora, Sunaina
    Khare, Kedar
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2021, 38 (04) : 488 - 497
  • [44] TOWARDS A STRATEGY FOR AUTOMATIC PHASE RETRIEVAL FROM NOISY FOURIER INTENSITIES
    MCCALLUM, BC
    BATES, RHT
    JOURNAL OF MODERN OPTICS, 1989, 36 (05) : 619 - 648
  • [45] Fourier transform demodulation of pixelated phase-masked interferograms
    Servin, M.
    Estrada, J. C.
    Medina, O.
    OPTICS EXPRESS, 2010, 18 (15): : 16090 - 16095
  • [46] FOURIER PHASE RETRIEVAL WITH ARBITRARY REFERENCE SIGNAL
    Arab, Fahimeh
    Asif, M. Salman
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 1479 - 1483
  • [47] Phase retrieval of gratings by applying Fourier analysis
    Castaneda, R
    Garcia-Sucerquia, J
    Medina, FF
    OPTICS FOR THE QUALITY OF LIFE, PTS 1 AND 2, 2003, 4829 : 33 - 34
  • [48] FOURIER PHASE RETRIEVAL ALGORITHM WITH NOISE CONSTRAINTS
    LIU, G
    SIGNAL PROCESSING, 1990, 21 (04) : 339 - 347
  • [49] Phase retrieval with Fourier-weighted projections
    Guizar-Sicairos, Manuel
    Fienup, James R.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2008, 25 (03) : 701 - 709
  • [50] Fast and robust phase retrieval or masked coherent diffractive imaging
    Song, Li
    Lam, Edmund Y.
    PHOTONICS RESEARCH, 2022, 10 (03) : 758 - 768