Riemannian optimization for phase retrieval from masked Fourier measurements

被引:0
|
作者
Huiping Li
Song Li
机构
[1] Zhejiang University,School of Mathematical Sciences
[2] Hangzhou Normal University,Department of Mathematics
来源
关键词
Phase retrieval; Riemannian optimization; Gradient descent algorithm; Conjugate gradient descent algorithm; Masked Fourier measurements; 15A29; 94A12; 94A20; 78A45; 41A29; 53B21; 90C26; 68Q25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the noisy phase retrieval problem under the measurements of Fourier transforms with complex random masks. Here two kinds of Riemannian optimization algorithms, namely, Riemannian gradient descent algorithm (RGrad) and Riemannian conjugate gradient descent algorithm (RCG), are presented to solve such problem from these special but widely used measurements in practical applications. Since the masked Fourier measurements are less random, we establish stable guarantees for signals by the truncated variants of RGrad and RCG, respectively. First of all, a good initialization is constructed by means of a truncated spectral method. Then we prove that a signal x∈ℂn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {x}\in \mathbb {C}^{n}$\end{document} can be recovered robustly to bounded noise through these two algorithms, provided that L=O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L= O(\log n)$\end{document} complex random masks are performed in the measurement process. This implies that the sample complexity is optimal up to a log factor, namely, O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(n\log n)$\end{document}. Particularly, each sequence generated by the truncated RGrad and RCG provably converges to the true solution at a geometric rate in the noiseless case. Finally, several empirical experiments are provided to show the effectiveness and stability of such two kinds of algorithms compared with Wirtinger Flow(WF) algorithm, for which provable guarantee has been set up for signals under masked Fourier measurements, provided that L=O(log4n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L= O(\log ^{4}n)$\end{document}.
引用
收藏
相关论文
共 50 条
  • [11] NUMERICAL OPTIMIZATION ALGORITHMS FOR WAVEFRONT PHASE RETRIEVAL FROM MULTIPLE MEASUREMENTS
    Li, Ji
    Zhou, Tie
    INVERSE PROBLEMS AND IMAGING, 2017, 11 (04) : 721 - 743
  • [12] Phase Retrieval from 1D Fourier Measurements: Convexity, Uniqueness, and Algorithms
    Huang, Kejun
    Eldar, Yonina C.
    Sidiropoulos, Nicholas D.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (23) : 6105 - 6117
  • [13] PHASE RETRIEVAL FROM 2 INTENSITY MEASUREMENTS USING THE FOURIER-SERIES EXPANSION
    NAKAJIMA, N
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1987, 4 (01): : 154 - 158
  • [14] Phase Retrieval From Multiple-Window Short-Time Fourier Measurements
    Li, Lan
    Cheng, Cheng
    Han, Deguang
    Sun, Qiyu
    Shi, Guangming
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (04) : 372 - 376
  • [15] PHASE RETRIEVAL FROM STFT MEASUREMENTS VIA NON-CONVEX OPTIMIZATION
    Bendory, Tamir
    Eldar, Yonina C.
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 4770 - 4774
  • [16] Phase Retrieval From Binary Measurements
    Mukherjee, Subhadip
    Seelamantula, Chandra Sekhar
    IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (03) : 348 - 352
  • [17] Phase Retrieval from Gabor Measurements
    Irena Bojarovska
    Axel Flinth
    Journal of Fourier Analysis and Applications, 2016, 22 : 542 - 567
  • [18] Phase Retrieval from Gabor Measurements
    Bojarovska, Irena
    Flinth, Axel
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2016, 22 (03) : 542 - 567
  • [19] Phase retrieval using iterative Fourier transform and convex optimization algorithm
    Zhang Fen
    Cheng Hong
    Zhang Quanbing
    Wei Sui
    THREE-DIMENSIONAL IMAGING, VISUALIZATION, AND DISPLAY 2015, 2015, 9495
  • [20] Polarimetric Fourier Phase Retrieval
    Flamant, Julien
    Usevich, Konstantin
    Clausel, Marianne
    Brie, David
    SIAM JOURNAL ON IMAGING SCIENCES, 2024, 17 (01): : 632 - 671