Wiener Indices of Maximal k-Degenerate Graphs

被引:0
|
作者
Allan Bickle
Zhongyuan Che
机构
[1] Penn State University,Department of Mathematics
[2] Penn State University,Department of Mathematics
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
-Tree; Maximal ; -degenerate graph; Wiener index;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is maximal k-degenerate if each induced subgraph has a vertex of degree at most k and adding any new edge to the graph violates this condition. In this paper, we provide sharp lower and upper bounds on Wiener indices of maximal k-degenerate graphs of order n≥k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge k \ge 1$$\end{document}. A graph is chordal if every induced cycle in the graph is a triangle and chordal maximal k-degenerate graphs of order n≥k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge k$$\end{document} are k-trees. For k-trees of order n≥2k+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2k+2$$\end{document}, we characterize all extremal graphs for the upper bound.
引用
收藏
页码:581 / 589
页数:8
相关论文
共 50 条
  • [1] Wiener Indices of Maximal k-Degenerate Graphs
    Bickle, Allan
    Che, Zhongyuan
    GRAPHS AND COMBINATORICS, 2021, 37 (02) : 581 - 589
  • [2] Zagreb indices of maximal k-degenerate graphs
    Bickle, Allan
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2024, 89 : 167 - 178
  • [3] Irregularities of maximal k-degenerate graphs
    Bickle, Allan
    Che, Zhongyuan
    DISCRETE APPLIED MATHEMATICS, 2023, 331 : 70 - 87
  • [4] STRUCTURAL RESULTS ON MAXIMAL k-DEGENERATE GRAPHS
    Bickle, Allan
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (04) : 659 - 676
  • [5] Strong chromatic index of k-degenerate graphs
    Wang, Tao
    DISCRETE MATHEMATICS, 2014, 330 : 17 - 19
  • [6] Game chromatic index of k-degenerate graphs
    Cai, LZ
    Zhu, XD
    JOURNAL OF GRAPH THEORY, 2001, 36 (03) : 144 - 155
  • [7] Strong edge-colorings for k-degenerate graphs
    Yu, Gexin
    GRAPHS AND COMBINATORICS, 2015, 31 (05) : 1815 - 1818
  • [8] LOCALLY K-DEGENERATE GRAPHS - DEFINITION AND 2 CONJECTURES
    SIMOESPEREIRA, JMS
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1978, 299 : 80 - 83
  • [9] List star edge coloring of k-degenerate graphs
    Han, Miaomiao
    Li, Jiaao
    Luo, Rong
    Miao, Zhengke
    DISCRETE MATHEMATICS, 2019, 342 (06) : 1838 - 1848
  • [10] Minimal reducible bounds for the class of k-degenerate graphs
    Mihók, P
    DISCRETE MATHEMATICS, 2001, 236 (1-3) : 273 - 279