Wiener Indices of Maximal k-Degenerate Graphs

被引:0
|
作者
Allan Bickle
Zhongyuan Che
机构
[1] Penn State University,Department of Mathematics
[2] Penn State University,Department of Mathematics
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
-Tree; Maximal ; -degenerate graph; Wiener index;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is maximal k-degenerate if each induced subgraph has a vertex of degree at most k and adding any new edge to the graph violates this condition. In this paper, we provide sharp lower and upper bounds on Wiener indices of maximal k-degenerate graphs of order n≥k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge k \ge 1$$\end{document}. A graph is chordal if every induced cycle in the graph is a triangle and chordal maximal k-degenerate graphs of order n≥k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge k$$\end{document} are k-trees. For k-trees of order n≥2k+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2k+2$$\end{document}, we characterize all extremal graphs for the upper bound.
引用
收藏
页码:581 / 589
页数:8
相关论文
共 50 条