Wiener Indices of Maximal k-Degenerate Graphs

被引:0
|
作者
Allan Bickle
Zhongyuan Che
机构
[1] Penn State University,Department of Mathematics
[2] Penn State University,Department of Mathematics
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
-Tree; Maximal ; -degenerate graph; Wiener index;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is maximal k-degenerate if each induced subgraph has a vertex of degree at most k and adding any new edge to the graph violates this condition. In this paper, we provide sharp lower and upper bounds on Wiener indices of maximal k-degenerate graphs of order n≥k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge k \ge 1$$\end{document}. A graph is chordal if every induced cycle in the graph is a triangle and chordal maximal k-degenerate graphs of order n≥k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge k$$\end{document} are k-trees. For k-trees of order n≥2k+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2k+2$$\end{document}, we characterize all extremal graphs for the upper bound.
引用
收藏
页码:581 / 589
页数:8
相关论文
共 50 条
  • [31] Reverse Wiener indices of connected graphs
    Cai, Xiaochun
    Zhou, Bo
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2008, 60 (01) : 95 - 105
  • [32] Variable Wiener indices of thorn graphs
    Zhou, Bo
    Graovac, Ante
    Vukicevic, Damir
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2006, 56 (02) : 375 - 382
  • [33] Optimizing Wiener and Randic Indices of Graphs
    Mahasinghe, A. C.
    Erandi, K. K. W. H.
    Perera, S. S. N.
    ADVANCES IN OPERATIONS RESEARCH, 2020, 2020
  • [34] Wiener and Hosoya indices of reciprocal graphs
    Mandal, B
    Banerjee, M
    Mukherjee, AK
    MOLECULAR PHYSICS, 2005, 103 (19) : 2665 - 2674
  • [35] On the Reverse Wiener Indices of Unicyclic Graphs
    Du, Zhibin
    Zhou, Bo
    ACTA APPLICANDAE MATHEMATICAE, 2009, 106 (02) : 293 - 306
  • [36] On a ratio of Wiener indices for embedded graphs
    Abrams, Lowell
    Lauderdale, L. -K.
    DISCRETE MATHEMATICS, 2023, 346 (05)
  • [37] New composition of graphs and their Wiener Indices
    Goyal, Shanu
    Garg, Pravin
    Mishra, Vishnu Narayan
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2019, 4 (01) : 163 - 168
  • [38] On the Reverse Wiener Indices of Unicyclic Graphs
    Zhibin Du
    Bo Zhou
    Acta Applicandae Mathematicae, 2009, 106 : 293 - 306
  • [39] A Note on Wiener Indices of Unicyclic Graphs
    Du, Zhibin
    Zhou, Bo
    ARS COMBINATORIA, 2009, 93 : 97 - 103
  • [40] The maximum Wiener index of maximal planar graphs
    Ghosh, Debarun
    Gyori, Ervin
    Paulos, Addisu
    Salia, Nika
    Zamora, Oscar
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 40 (04) : 1121 - 1135