Wiener Indices of Maximal k-Degenerate Graphs

被引:0
|
作者
Allan Bickle
Zhongyuan Che
机构
[1] Penn State University,Department of Mathematics
[2] Penn State University,Department of Mathematics
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
-Tree; Maximal ; -degenerate graph; Wiener index;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is maximal k-degenerate if each induced subgraph has a vertex of degree at most k and adding any new edge to the graph violates this condition. In this paper, we provide sharp lower and upper bounds on Wiener indices of maximal k-degenerate graphs of order n≥k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge k \ge 1$$\end{document}. A graph is chordal if every induced cycle in the graph is a triangle and chordal maximal k-degenerate graphs of order n≥k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge k$$\end{document} are k-trees. For k-trees of order n≥2k+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2k+2$$\end{document}, we characterize all extremal graphs for the upper bound.
引用
收藏
页码:581 / 589
页数:8
相关论文
共 50 条
  • [11] The relaxed game chromatic index of k-degenerate graphs
    Lundon, Charles
    DISCRETE MATHEMATICS, 2007, 307 (14) : 1767 - 1775
  • [12] The d-precoloring problem for k-degenerate graphs
    Chlebikova, Janka
    Jansen, Klaus
    DISCRETE MATHEMATICS, 2007, 307 (16) : 2042 - 2052
  • [13] Efficient Enumeration of Maximal k-Degenerate Subgraphs in a Chordal Graph
    Conte, Alessio
    Kante, Mamadou Moustapha
    Otachi, Yota
    Uno, Takeaki
    Wasa, Kunihiro
    COMPUTING AND COMBINATORICS, COCOON 2017, 2017, 10392 : 150 - 161
  • [14] The Relaxed Edge-Coloring Game and k-Degenerate Graphs
    Dunn, Charles
    Morawski, David
    Nordstrom, Jennifer Firkins
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2015, 32 (03): : 347 - 361
  • [15] Efficient enumeration of maximal k-degenerate induced subgraphs of a chordal graph
    Conte, Alessio
    Kanté, Mamadou Moustapha
    Otachi, Yota
    Uno, Takeaki
    Wasa, Kunihiro
    Theoretical Computer Science, 2021, 818 : 2 - 11
  • [16] The Relaxed Edge-Coloring Game and k-Degenerate Graphs
    Charles Dunn
    David Morawski
    Jennifer Firkins Nordstrom
    Order, 2015, 32 : 347 - 361
  • [17] Efficient enumeration of maximal k-degenerate induced subgraphs of a chordal graph
    Conte, Alessio
    Kante, Mamadou Moustapha
    Otachi, Yota
    Uno, Takeaki
    Wasa, Kunihiro
    THEORETICAL COMPUTER SCIENCE, 2020, 818 : 2 - 11
  • [18] An upper bound on Wiener Indices of maximal planar graphs
    Che, Zhongyuan
    Collins, Karen L.
    DISCRETE APPLIED MATHEMATICS, 2019, 258 : 76 - 86
  • [19] A bound on the values of independence polynomials at-1/k for k-degenerate graphs
    Estes, John
    Staton, William
    Wei, Bing
    DISCRETE MATHEMATICS, 2013, 313 (18) : 1793 - 1798
  • [20] PROOF OF SIMOES-PEREIRAS CONJECTURES ON LOCALLY K-DEGENERATE GRAPHS
    BORODIN, OV
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1980, 319 : 23 - 24