Wiener Indices of Maximal k-Degenerate Graphs

被引:8
|
作者
Bickle, Allan [1 ]
Che, Zhongyuan [2 ]
机构
[1] Penn State Univ, Dept Math, Altoona Campus, Altoona, PA 16601 USA
[2] Penn State Univ, Dept Math, Beaver Campus, Monaca, PA 15061 USA
关键词
k-Tree; Maximal k-degenerate graph; Wiener index; DISTANCE;
D O I
10.1007/s00373-020-02264-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is maximal k-degenerate if each induced subgraph has a vertex of degree at most k and adding any new edge to the graph violates this condition. In this paper, we provide sharp lower and upper bounds on Wiener indices of maximal k-degenerate graphs of order n >= k >= 1. A graph is chordal if every induced cycle in the graph is a triangle and chordal maximal k-degenerate graphs of order n >= k are k-trees. For k-trees of order n >= 2k + 2, we characterize all extremal graphs for the upper bound.
引用
收藏
页码:581 / 589
页数:9
相关论文
共 50 条
  • [1] Wiener Indices of Maximal k-Degenerate Graphs
    Allan Bickle
    Zhongyuan Che
    Graphs and Combinatorics, 2021, 37 : 581 - 589
  • [2] Zagreb indices of maximal k-degenerate graphs
    Bickle, Allan
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2024, 89 : 167 - 178
  • [3] Irregularities of maximal k-degenerate graphs
    Bickle, Allan
    Che, Zhongyuan
    DISCRETE APPLIED MATHEMATICS, 2023, 331 : 70 - 87
  • [4] STRUCTURAL RESULTS ON MAXIMAL k-DEGENERATE GRAPHS
    Bickle, Allan
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (04) : 659 - 676
  • [5] Strong chromatic index of k-degenerate graphs
    Wang, Tao
    DISCRETE MATHEMATICS, 2014, 330 : 17 - 19
  • [6] Game chromatic index of k-degenerate graphs
    Cai, LZ
    Zhu, XD
    JOURNAL OF GRAPH THEORY, 2001, 36 (03) : 144 - 155
  • [7] Strong edge-colorings for k-degenerate graphs
    Yu, Gexin
    GRAPHS AND COMBINATORICS, 2015, 31 (05) : 1815 - 1818
  • [8] LOCALLY K-DEGENERATE GRAPHS - DEFINITION AND 2 CONJECTURES
    SIMOESPEREIRA, JMS
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1978, 299 : 80 - 83
  • [9] List star edge coloring of k-degenerate graphs
    Han, Miaomiao
    Li, Jiaao
    Luo, Rong
    Miao, Zhengke
    DISCRETE MATHEMATICS, 2019, 342 (06) : 1838 - 1848
  • [10] Minimal reducible bounds for the class of k-degenerate graphs
    Mihók, P
    DISCRETE MATHEMATICS, 2001, 236 (1-3) : 273 - 279