Wiener Indices of Maximal k-Degenerate Graphs

被引:8
|
作者
Bickle, Allan [1 ]
Che, Zhongyuan [2 ]
机构
[1] Penn State Univ, Dept Math, Altoona Campus, Altoona, PA 16601 USA
[2] Penn State Univ, Dept Math, Beaver Campus, Monaca, PA 15061 USA
关键词
k-Tree; Maximal k-degenerate graph; Wiener index; DISTANCE;
D O I
10.1007/s00373-020-02264-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is maximal k-degenerate if each induced subgraph has a vertex of degree at most k and adding any new edge to the graph violates this condition. In this paper, we provide sharp lower and upper bounds on Wiener indices of maximal k-degenerate graphs of order n >= k >= 1. A graph is chordal if every induced cycle in the graph is a triangle and chordal maximal k-degenerate graphs of order n >= k are k-trees. For k-trees of order n >= 2k + 2, we characterize all extremal graphs for the upper bound.
引用
收藏
页码:581 / 589
页数:9
相关论文
共 50 条
  • [31] Reverse Wiener indices of connected graphs
    Cai, Xiaochun
    Zhou, Bo
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2008, 60 (01) : 95 - 105
  • [32] Variable Wiener indices of thorn graphs
    Zhou, Bo
    Graovac, Ante
    Vukicevic, Damir
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2006, 56 (02) : 375 - 382
  • [33] Optimizing Wiener and Randic Indices of Graphs
    Mahasinghe, A. C.
    Erandi, K. K. W. H.
    Perera, S. S. N.
    ADVANCES IN OPERATIONS RESEARCH, 2020, 2020
  • [34] Wiener and Hosoya indices of reciprocal graphs
    Mandal, B
    Banerjee, M
    Mukherjee, AK
    MOLECULAR PHYSICS, 2005, 103 (19) : 2665 - 2674
  • [35] On the Reverse Wiener Indices of Unicyclic Graphs
    Du, Zhibin
    Zhou, Bo
    ACTA APPLICANDAE MATHEMATICAE, 2009, 106 (02) : 293 - 306
  • [36] On a ratio of Wiener indices for embedded graphs
    Abrams, Lowell
    Lauderdale, L. -K.
    DISCRETE MATHEMATICS, 2023, 346 (05)
  • [37] New composition of graphs and their Wiener Indices
    Goyal, Shanu
    Garg, Pravin
    Mishra, Vishnu Narayan
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2019, 4 (01) : 163 - 168
  • [38] On the Reverse Wiener Indices of Unicyclic Graphs
    Zhibin Du
    Bo Zhou
    Acta Applicandae Mathematicae, 2009, 106 : 293 - 306
  • [39] A Note on Wiener Indices of Unicyclic Graphs
    Du, Zhibin
    Zhou, Bo
    ARS COMBINATORIA, 2009, 93 : 97 - 103
  • [40] The maximum Wiener index of maximal planar graphs
    Ghosh, Debarun
    Gyori, Ervin
    Paulos, Addisu
    Salia, Nika
    Zamora, Oscar
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 40 (04) : 1121 - 1135