Multi-peak solutions for a class of nonlinear Schrödinger equations

被引:0
|
作者
Angela Pistoia
机构
[1] Dipartimento Me.Mo.Mat.,
[2] via A.Scarpa 16,undefined
[3] 00100 Roma,undefined
[4] e-mail: pistoia@dmmm.uniroma1.it,undefined
关键词
Key words: Nonlinear Schrödinger equation, multi-peak solutions, Liapunov-Schmidt reduction.;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the study of positive solutions of¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ -\varepsilon^2\Delta u+\lambda u=f(x,u)\quad {\rm on}\quad \mathbb{R}^N, $\end{document}¶¶where ε is a small parameter, λ>0 and f is an appropriate function. Here we find multi-peak solutions exhibiting concentration at any prescribed "stable" set of zeroes of the field¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ {\cal S}(P)=\int\limits_{\mathbb{R}^N}\left[\nabla_xf(P,U_P(y))\cdot y\right]\nabla U_P(y)dy,\quad P\in \mathbb{R}^N, $\end{document}¶¶where UP is the unique radial solution of the limit equation¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ -\Delta U_P+\lambda U_P=f(P,U_P)\quad {\rm on} \quad \mathbb{R}^N. $\end{document}¶¶Conversely, we show that the points at which a sequence of multi-peak solutions concentrate must be zeroes of the field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ {\cal S} $\end{document}.
引用
收藏
页码:69 / 91
页数:22
相关论文
共 50 条
  • [21] Multi-peak Solutions of a Class of Fractional p-Laplacian Equations
    Chang, Xiaojun
    Sato, Yohei
    Zhang, Chengxiang
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (01)
  • [22] Multi-peak positive solutions for nonlinear Schrodinger equations with critical frequency
    Sato, Yohei
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 29 (03) : 365 - 395
  • [23] The existence and local uniqueness of normalized peak solutions to fractional nonlinear Schrödinger equations
    Guo, Qing
    Wang, Chunhua
    Yang, Jing
    MANUSCRIPTA MATHEMATICA, 2025, 176 (01)
  • [24] On the lifespan of nonzero background solutions to a class of focusing nonlinear Schrödinger equations
    Hennig, Dirk
    Karachalios, Nikos I.
    Mantzavinos, Dionyssios
    Mitsotakis, Dimitrios
    WAVE MOTION, 2025, 132
  • [25] On a Class of Solutions to the Generalized Derivative Schr?dinger Equations
    Felipe LINARES
    Gustavo PONCE
    Gleison NSANTOS
    ActaMathematicaSinica, 2019, 35 (06) : 1057 - 1073
  • [26] On a Class of Solutions to the Generalized Derivative Schr?dinger Equations
    Felipe LINARES
    Gustavo PONCE
    Gleison N.SANTOS
    Acta Mathematica Sinica,English Series, 2019, (06) : 1057 - 1073
  • [27] On a Class of Solutions to the Generalized Derivative Schrödinger Equations
    Felipe Linares
    Gustavo Ponce
    Gleison N. Santos
    Acta Mathematica Sinica, English Series, 2019, 35 : 1057 - 1073
  • [28] The Existence and Local Uniqueness of Multi-Peak Solutions to a Class of Kirchhoff Type Equations
    Cui, Leilei
    Guo, Jiaxing
    Li, Gongbao
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (03) : 1131 - 1160
  • [29] The Existence and Local Uniqueness of Multi-Peak Solutions to a Class of Kirchhoff Type Equations
    Leilei Cui
    Jiaxing Guo
    Gongbao Li
    Acta Mathematica Scientia, 2023, 43 : 1131 - 1160
  • [30] Local uniqueness of multi-peak solutions to a class of Schrodinger equations with competing potential
    Niu, Yahui
    Tian, Shuying
    Yang, Pingping
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (03)