Multi-peak solutions for a class of nonlinear Schrödinger equations

被引:0
|
作者
Angela Pistoia
机构
[1] Dipartimento Me.Mo.Mat.,
[2] via A.Scarpa 16,undefined
[3] 00100 Roma,undefined
[4] e-mail: pistoia@dmmm.uniroma1.it,undefined
关键词
Key words: Nonlinear Schrödinger equation, multi-peak solutions, Liapunov-Schmidt reduction.;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the study of positive solutions of¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ -\varepsilon^2\Delta u+\lambda u=f(x,u)\quad {\rm on}\quad \mathbb{R}^N, $\end{document}¶¶where ε is a small parameter, λ>0 and f is an appropriate function. Here we find multi-peak solutions exhibiting concentration at any prescribed "stable" set of zeroes of the field¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ {\cal S}(P)=\int\limits_{\mathbb{R}^N}\left[\nabla_xf(P,U_P(y))\cdot y\right]\nabla U_P(y)dy,\quad P\in \mathbb{R}^N, $\end{document}¶¶where UP is the unique radial solution of the limit equation¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ -\Delta U_P+\lambda U_P=f(P,U_P)\quad {\rm on} \quad \mathbb{R}^N. $\end{document}¶¶Conversely, we show that the points at which a sequence of multi-peak solutions concentrate must be zeroes of the field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ {\cal S} $\end{document}.
引用
收藏
页码:69 / 91
页数:22
相关论文
共 50 条
  • [31] Normalized solutions for nonlinear Schrödinger equations on graphs
    Yang, Yunyan
    Zhao, Liang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 536 (01)
  • [32] Multiplicity of semiclassical solutions to nonlinear Schrödinger equations
    Yanheng Ding
    Juncheng Wei
    Journal of Fixed Point Theory and Applications, 2017, 19 : 987 - 1010
  • [33] THE EXISTENCE AND LOCAL UNIQUENESS OF MULTI-PEAK SOLUTIONS TO A CLASS OF KIRCHHOFF TYPE EQUATIONS
    崔磊磊
    郭佳星
    李工宝
    Acta Mathematica Scientia, 2023, 43 (03) : 1131 - 1160
  • [34] Approximate Solutions of Perturbed Nonlinear Schr(?)dinger Equations
    CHENG Xue-Ping(1
    CommunicationsinTheoreticalPhysics, 2007, 48 (08) : 227 - 231
  • [35] Non-existence of Multi-peak Solutions to the Schr?dinger-Newton System with L2-constraint
    Qing GUO
    Li-xiu DUAN
    ActaMathematicaeApplicataeSinica, 2023, 39 (04) : 868 - 877
  • [36] Multi-peak bound states for nonlinear Schrodinger equations
    Departamento de Matematicas, Fac. de Ciencias, Universidad de Chile, Casilla 653, Santiago I, Chile
    不详
    Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis, 15 (02): : 127 - 149
  • [37] Multi-peak bound states for nonlinear Schrodinger equations
    Del Pino, M
    Felmer, PL
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (02): : 127 - 149
  • [38] Multi-component vortex solutions in symmetric coupled nonlinear Schrödinger equations
    Desyatnikov A.S.
    Pelinovsky D.E.
    Yang J.
    Journal of Mathematical Sciences, 2008, 151 (4) : 3091 - 3111
  • [39] Global Attractor for a Class of Coupled Nonlinear Schrödinger Equations
    Li G.
    Zhu C.
    SeMA Journal, 2012, 60 (1) : 5 - 25
  • [40] Existence and Local Uniqueness of Normalized Multi-Peak Solutions to a Class of Kirchhoff Type Equations
    Cui, Leilei
    Li, Gongbao
    Luo, Peng
    Wang, Chunhua
    MINIMAX THEORY AND ITS APPLICATIONS, 2022, 7 (02): : 207 - 252