THE EXISTENCE AND LOCAL UNIQUENESS OF MULTI-PEAK SOLUTIONS TO A CLASS OF KIRCHHOFF TYPE EQUATIONS

被引:0
|
作者
崔磊磊 [1 ]
郭佳星 [1 ]
李工宝 [1 ]
机构
[1] Hubei Key Laboratory of Mathematical Sciences and School of Mathematics and Statistics,Central China Normal University
关键词
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper, we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations -(ε2a + εb∫R3|?u|2)?u + V(x)u = up, u > 0 in R3,which concentrate at non-degenerate critical points of the potential function V(x), where a, b >0, 1 < p < 5 are constants, and ε > 0 is a parameter. Applying the Lyapunov-Schmidt reduction method and a local Pohozaev type identity, we establish the existence and local uniqueness results of multi-peak solutions, which concentrate at{ai}1≤i≤k, where{ai}1≤i≤k are non-degenerate critical points of V(x) as ε→0.
引用
收藏
页码:1131 / 1160
页数:30
相关论文
共 50 条
  • [1] The Existence and Local Uniqueness of Multi-Peak Solutions to a Class of Kirchhoff Type Equations
    Leilei Cui
    Jiaxing Guo
    Gongbao Li
    Acta Mathematica Scientia, 2023, 43 : 1131 - 1160
  • [2] The Existence and Local Uniqueness of Multi-Peak Solutions to a Class of Kirchhoff Type Equations
    Cui, Leilei
    Guo, Jiaxing
    Li, Gongbao
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (03) : 1131 - 1160
  • [3] Existence and Local Uniqueness of Normalized Multi-Peak Solutions to a Class of Kirchhoff Type Equations
    Cui, Leilei
    Li, Gongbao
    Luo, Peng
    Wang, Chunhua
    MINIMAX THEORY AND ITS APPLICATIONS, 2022, 7 (02): : 207 - 252
  • [4] LOCAL UNIQUENESS OF MULTI-PEAK SOLUTIONS TO A CLASS OF KIRCHHOFF EQUATIONS
    Li, Gongbao
    Niu, Yahui
    Xiang, Chang-Lin
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 121 - 137
  • [5] The Existence and Local Uniqueness of Multi-Peak Positive Solutions to a Class of Kirchhoff Equation
    Li, Gongbao
    Niu, Yahui
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (01) : 90 - 112
  • [6] THE EXISTENCE AND LOCAL UNIQUENESS OF MULTI-PEAK POSITIVE SOLUTIONS TO A CLASS OF KIRCHHOFF EQUATION
    李工宝
    牛亚慧
    ActaMathematicaScientia, 2020, 40 (01) : 90 - 112
  • [7] The Existence and Local Uniqueness of Multi-Peak Positive Solutions to a Class of Kirchhoff Equation
    Gongbao Li
    Yahui Niu
    Acta Mathematica Scientia, 2020, 40 : 90 - 112
  • [8] Multi-peak positive solutions to a class of Kirchhoff equations
    Luo, Peng
    Peng, Shuangjie
    Wang, Chunhua
    Xiang, Chang-Lin
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (04) : 1097 - 1122
  • [9] Local uniqueness of multi-peak solutions to a class of Schrodinger equations with competing potential
    Niu, Yahui
    Tian, Shuying
    Yang, Pingping
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (03)
  • [10] Multi-peak solutions of a type of Kirchhoff equations with critical exponent
    Chen, Mengyao
    Li, Qi
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (08) : 1380 - 1398