LOCAL UNIQUENESS OF MULTI-PEAK SOLUTIONS TO A CLASS OF KIRCHHOFF EQUATIONS

被引:1
|
作者
Li, Gongbao [1 ]
Niu, Yahui [1 ]
Xiang, Chang-Lin [2 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Yangtze Univ, Sch Informat & Math, Jingzhou 434023, Peoples R China
关键词
Kirchhoff equations; multi-peak positive solutions; local uniqueness; local Pohozaev identity; NONLINEAR SCHRODINGER-EQUATIONS; BOUND-STATES; POSITIVE SOLUTIONS; CONCENTRATION BEHAVIOR; EXISTENCE; MULTIPLICITY; BUMP; R-3;
D O I
10.5186/aasfm.2020.4503
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the nonlocal Kirchhoff problem -(c(2)a + cb integral(R3 )vertical bar del u vertical bar(2)) Delta u + V(x)u = u(p), u > 0, u is an element of H1(R-3) where a, b > 0, 1 < p < 5 are constants, c > 0 is a parameter. Under some assumptions on V(x), we show the local uniqueness of positive multi-peak solutions by using the local Pohozaev identity.
引用
收藏
页码:121 / 137
页数:17
相关论文
共 50 条
  • [1] The Existence and Local Uniqueness of Multi-Peak Solutions to a Class of Kirchhoff Type Equations
    Leilei Cui
    Jiaxing Guo
    Gongbao Li
    [J]. Acta Mathematica Scientia, 2023, 43 : 1131 - 1160
  • [2] The Existence and Local Uniqueness of Multi-Peak Solutions to a Class of Kirchhoff Type Equations
    Cui, Leilei
    Guo, Jiaxing
    Li, Gongbao
    [J]. ACTA MATHEMATICA SCIENTIA, 2023, 43 (03) : 1131 - 1160
  • [3] THE EXISTENCE AND LOCAL UNIQUENESS OF MULTI-PEAK SOLUTIONS TO A CLASS OF KIRCHHOFF TYPE EQUATIONS
    崔磊磊
    郭佳星
    李工宝
    [J]. Acta Mathematica Scientia, 2023, 43 (03) : 1131 - 1160
  • [4] Existence and Local Uniqueness of Normalized Multi-Peak Solutions to a Class of Kirchhoff Type Equations
    Cui, Leilei
    Li, Gongbao
    Luo, Peng
    Wang, Chunhua
    [J]. MINIMAX THEORY AND ITS APPLICATIONS, 2022, 7 (02): : 207 - 252
  • [5] The Existence and Local Uniqueness of Multi-Peak Positive Solutions to a Class of Kirchhoff Equation
    Li, Gongbao
    Niu, Yahui
    [J]. ACTA MATHEMATICA SCIENTIA, 2020, 40 (01) : 90 - 112
  • [6] THE EXISTENCE AND LOCAL UNIQUENESS OF MULTI-PEAK POSITIVE SOLUTIONS TO A CLASS OF KIRCHHOFF EQUATION
    李工宝
    牛亚慧
    [J]. Acta Mathematica Scientia, 2020, 40 (01) : 90 - 112
  • [7] The Existence and Local Uniqueness of Multi-Peak Positive Solutions to a Class of Kirchhoff Equation
    Gongbao Li
    Yahui Niu
    [J]. Acta Mathematica Scientia, 2020, 40 : 90 - 112
  • [8] Multi-peak positive solutions to a class of Kirchhoff equations
    Luo, Peng
    Peng, Shuangjie
    Wang, Chunhua
    Xiang, Chang-Lin
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (04) : 1097 - 1122
  • [9] Local uniqueness of multi-peak solutions to a class of Schrodinger equations with competing potential
    Niu, Yahui
    Tian, Shuying
    Yang, Pingping
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (03)
  • [10] Multi-peak solutions of a type of Kirchhoff equations with critical exponent
    Chen, Mengyao
    Li, Qi
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (08) : 1380 - 1398