The Existence and Local Uniqueness of Multi-Peak Solutions to a Class of Kirchhoff Type Equations

被引:0
|
作者
Leilei Cui
Jiaxing Guo
Gongbao Li
机构
[1] Central China Normal University,Hubei Key Laboratory of Mathematical Sciences and School of Mathematics and Statistics
来源
Acta Mathematica Scientia | 2023年 / 43卷
关键词
Kirchhoff type equations; potential functions having non-degenerate critical points; the Lyapunov-Schmidt reduction method; multi-peak solutions; existence and local uniqueness; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ - \left({{\varepsilon ^2}a + \varepsilon b\int_{{\mathbb{R}^3}} {|\nabla u{|^2}}} \right)\,\,\Delta u + V(x)u = {u^p},\,\,\,\,\,\,u > 0\,\,\,\,\,{\rm{in}}\,\,\,{\mathbb{R}^3},$$\end{document} which concentrate at non-degenerate critical points of the potential function V(x), where a, b > 0, 1 < p < 5 are constants, and ε > 0 is a parameter. Applying the Lyapunov-Schmidt reduction method and a local Pohozaev type identity, we establish the existence and local uniqueness results of multi-peak solutions, which concentrate at {ai}1≤i≤k, where {ai}1≤i≤k are non-degenerate critical points of V(x) as ε → 0.
引用
收藏
页码:1131 / 1160
页数:29
相关论文
共 50 条
  • [1] The Existence and Local Uniqueness of Multi-Peak Solutions to a Class of Kirchhoff Type Equations
    Cui, Leilei
    Guo, Jiaxing
    Li, Gongbao
    [J]. ACTA MATHEMATICA SCIENTIA, 2023, 43 (03) : 1131 - 1160
  • [2] THE EXISTENCE AND LOCAL UNIQUENESS OF MULTI-PEAK SOLUTIONS TO A CLASS OF KIRCHHOFF TYPE EQUATIONS
    崔磊磊
    郭佳星
    李工宝
    [J]. Acta Mathematica Scientia, 2023, 43 (03) : 1131 - 1160
  • [3] Existence and Local Uniqueness of Normalized Multi-Peak Solutions to a Class of Kirchhoff Type Equations
    Cui, Leilei
    Li, Gongbao
    Luo, Peng
    Wang, Chunhua
    [J]. MINIMAX THEORY AND ITS APPLICATIONS, 2022, 7 (02): : 207 - 252
  • [4] LOCAL UNIQUENESS OF MULTI-PEAK SOLUTIONS TO A CLASS OF KIRCHHOFF EQUATIONS
    Li, Gongbao
    Niu, Yahui
    Xiang, Chang-Lin
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 121 - 137
  • [5] The Existence and Local Uniqueness of Multi-Peak Positive Solutions to a Class of Kirchhoff Equation
    Li, Gongbao
    Niu, Yahui
    [J]. ACTA MATHEMATICA SCIENTIA, 2020, 40 (01) : 90 - 112
  • [6] THE EXISTENCE AND LOCAL UNIQUENESS OF MULTI-PEAK POSITIVE SOLUTIONS TO A CLASS OF KIRCHHOFF EQUATION
    李工宝
    牛亚慧
    [J]. Acta Mathematica Scientia, 2020, 40 (01) : 90 - 112
  • [7] The Existence and Local Uniqueness of Multi-Peak Positive Solutions to a Class of Kirchhoff Equation
    Gongbao Li
    Yahui Niu
    [J]. Acta Mathematica Scientia, 2020, 40 : 90 - 112
  • [8] Multi-peak positive solutions to a class of Kirchhoff equations
    Luo, Peng
    Peng, Shuangjie
    Wang, Chunhua
    Xiang, Chang-Lin
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (04) : 1097 - 1122
  • [9] Local uniqueness of multi-peak solutions to a class of Schrodinger equations with competing potential
    Niu, Yahui
    Tian, Shuying
    Yang, Pingping
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (03)
  • [10] Multi-peak solutions of a type of Kirchhoff equations with critical exponent
    Chen, Mengyao
    Li, Qi
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (08) : 1380 - 1398