In this paper, we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ - \left({{\varepsilon ^2}a + \varepsilon b\int_{{\mathbb{R}^3}} {|\nabla u{|^2}}} \right)\,\,\Delta u + V(x)u = {u^p},\,\,\,\,\,\,u > 0\,\,\,\,\,{\rm{in}}\,\,\,{\mathbb{R}^3},$$\end{document} which concentrate at non-degenerate critical points of the potential function V(x), where a, b > 0, 1 < p < 5 are constants, and ε > 0 is a parameter. Applying the Lyapunov-Schmidt reduction method and a local Pohozaev type identity, we establish the existence and local uniqueness results of multi-peak solutions, which concentrate at {ai}1≤i≤k, where {ai}1≤i≤k are non-degenerate critical points of V(x) as ε → 0.