Local uniqueness of multi-peak solutions to a class of Schrodinger equations with competing potential

被引:0
|
作者
Niu, Yahui [1 ]
Tian, Shuying [2 ]
Yang, Pingping [3 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450003, Peoples R China
[2] Sch Sci Wuhan Univ Technol, Dept Math, Wuhan 430070, Peoples R China
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
关键词
SEMICLASSICAL BOUND-STATES; POSITIVE SOLUTIONS; EXISTENCE; BUMP;
D O I
10.1063/5.0134220
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider the nonlinear Schrodinger equations. Let A(x) := [V(x)](p/p-2 - N2) [K(x)](- 2/p-2). Under some conditions on A, we show the local uniqueness of positive multi-peak solutions concentrating near k(k >= 2) distinct non-degenerate critical points of A by using the local Pohozaev identity. We generalize Cao-Li-Luo's results to the competing potential cases and show how these two potentials impact the uniqueness of concentrated solutions.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] LOCAL UNIQUENESS OF MULTI-PEAK SOLUTIONS TO A CLASS OF KIRCHHOFF EQUATIONS
    Li, Gongbao
    Niu, Yahui
    Xiang, Chang-Lin
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 121 - 137
  • [2] Multi-peak solutions for a class of nonlinear Schrodinger equations
    Pistoia, A
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2002, 9 (01): : 69 - 91
  • [3] The Existence and Local Uniqueness of Multi-Peak Solutions to a Class of Kirchhoff Type Equations
    Leilei Cui
    Jiaxing Guo
    Gongbao Li
    [J]. Acta Mathematica Scientia, 2023, 43 : 1131 - 1160
  • [4] The Existence and Local Uniqueness of Multi-Peak Solutions to a Class of Kirchhoff Type Equations
    Cui, Leilei
    Guo, Jiaxing
    Li, Gongbao
    [J]. ACTA MATHEMATICA SCIENTIA, 2023, 43 (03) : 1131 - 1160
  • [5] THE EXISTENCE AND LOCAL UNIQUENESS OF MULTI-PEAK SOLUTIONS TO A CLASS OF KIRCHHOFF TYPE EQUATIONS
    崔磊磊
    郭佳星
    李工宝
    [J]. Acta Mathematica Scientia, 2023, 43 (03) : 1131 - 1160
  • [6] Existence and Local Uniqueness of Normalized Multi-Peak Solutions to a Class of Kirchhoff Type Equations
    Cui, Leilei
    Li, Gongbao
    Luo, Peng
    Wang, Chunhua
    [J]. MINIMAX THEORY AND ITS APPLICATIONS, 2022, 7 (02): : 207 - 252
  • [7] The Existence and Local Uniqueness of Multi-Peak Positive Solutions to a Class of Kirchhoff Equation
    Li, Gongbao
    Niu, Yahui
    [J]. ACTA MATHEMATICA SCIENTIA, 2020, 40 (01) : 90 - 112
  • [8] THE EXISTENCE AND LOCAL UNIQUENESS OF MULTI-PEAK POSITIVE SOLUTIONS TO A CLASS OF KIRCHHOFF EQUATION
    李工宝
    牛亚慧
    [J]. Acta Mathematica Scientia, 2020, 40 (01) : 90 - 112
  • [9] The Existence and Local Uniqueness of Multi-Peak Positive Solutions to a Class of Kirchhoff Equation
    Gongbao Li
    Yahui Niu
    [J]. Acta Mathematica Scientia, 2020, 40 : 90 - 112
  • [10] Multi-peak positive solutions to a class of Kirchhoff equations
    Luo, Peng
    Peng, Shuangjie
    Wang, Chunhua
    Xiang, Chang-Lin
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (04) : 1097 - 1122