Contraction of orbits in random dynamical systems on the circle

被引:0
|
作者
V. A. Kleptsyn
M. B. Nalskii
机构
[1] Moscow State University Independent University of Moscow,
[2] Moscow State University,undefined
关键词
dynamics on the circle; random dynamical system; skew product; attractor;
D O I
暂无
中图分类号
学科分类号
摘要
The paper deals with a theoretical justification of the effect, observed in computer experiments, of convergence of orbits (without tending to any particular point) in random dynamical systems on the circle. The corresponding theorem is proved under certain assumptions satisfied, in particular, in some C1-open domain in the space of random dynamical systems.
引用
收藏
页码:267 / 282
页数:15
相关论文
共 50 条
  • [21] On the stability of periodic orbits in lattice dynamical systems
    Fernandez, Bastien
    Morante, Antonio
    Dynamical Systems, 2001, 16 (03) : 247 - 252
  • [22] On manifolds of connecting orbits in discretizations of dynamical systems
    Zou, YK
    Beyn, WJ
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (05) : 1499 - 1520
  • [23] Orbits closeness for slowly mixing dynamical systems
    Rousseau, Jerome
    Todd, Mike
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024, 44 (04) : 1192 - 1208
  • [24] On the stability of periodic orbits in lattice dynamical systems
    Fernandez, B
    Morante, A
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2001, 16 (03): : 247 - 252
  • [25] BIFURCATIONS OF PERIODIC ORBITS AND INTEGRABILITY OF DYNAMICAL SYSTEMS
    Kasperczuk, Stanislaw P.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (10): : 3345 - 3349
  • [26] INVARIANT SPECTRA OF ORBITS IN DYNAMICAL-SYSTEMS
    VOGLIS, N
    CONTOPOULOS, GJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (14): : 4899 - 4909
  • [27] ORBITS OF POLYNOMIAL DYNAMICAL SYSTEMS MODULO PRIMES
    Chang, Mei-Chu
    D'Andrea, Carlos
    Ostafe, Alina
    Shparlinski, Igor E.
    Sombra, Martin
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (05) : 2015 - 2025
  • [28] Random dynamical systems: a review
    Bhattacharya, R
    Majumdar, M
    ECONOMIC THEORY, 2003, 23 (01) : 13 - 38
  • [29] DYNAMICS OF RANDOM DYNAMICAL SYSTEMS
    Azjargal, Enkhbayar
    Choinkhor, Zorigt
    Tsegmid, Nyamdavaa
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (04) : 1131 - 1139
  • [30] Random dynamical systems with jumps
    Horbacz, K
    JOURNAL OF APPLIED PROBABILITY, 2004, 41 (03) : 890 - 910