Contraction of orbits in random dynamical systems on the circle

被引:0
|
作者
V. A. Kleptsyn
M. B. Nalskii
机构
[1] Moscow State University Independent University of Moscow,
[2] Moscow State University,undefined
关键词
dynamics on the circle; random dynamical system; skew product; attractor;
D O I
暂无
中图分类号
学科分类号
摘要
The paper deals with a theoretical justification of the effect, observed in computer experiments, of convergence of orbits (without tending to any particular point) in random dynamical systems on the circle. The corresponding theorem is proved under certain assumptions satisfied, in particular, in some C1-open domain in the space of random dynamical systems.
引用
收藏
页码:267 / 282
页数:15
相关论文
共 50 条
  • [41] Generation of random dynamical systems
    不详
    MONOTONE RANDOM SYSTEMS - THEORY AND APPLICATIONS, 2002, 1779 : 55 - 81
  • [42] Random periodic solutions of random dynamical systems
    Zhao, Huaizhong
    Zheng, Zuo-Huan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (05) : 2020 - 2038
  • [43] ORBITS IN HIGHLY PERTURBED DYNAMICAL SYSTEMS .2. STABILITY OF PERIODIC ORBITS
    CONTOPOULOS, G
    ASTRONOMICAL JOURNAL, 1970, 75 (01): : 108 - +
  • [44] DENSITY OF FIBERWISE ORBITS IN MINIMAL ITERATED FUNCTION SYSTEMS ON THE CIRCLE
    Barrientos, Pablo G.
    Fakhari, Abbas
    Sarizadeh, Aliasghar
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (09) : 3341 - 3352
  • [45] Contraction Theory for Dynamical Systems on Hilbert Spaces
    Cisneros-Velarde, Pedro
    Jafarpour, Saber
    Bullo, Francesco
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (12) : 6710 - 6715
  • [46] A variational approach to connecting orbits in nonlinear dynamical systems
    Dong, Chengwei
    Lan, Yueheng
    PHYSICS LETTERS A, 2014, 378 (09) : 705 - 712
  • [47] Nonintegrability of dynamical systems with homo- and heteroclinic orbits
    Yagasaki, Kazuynki
    Yamanaka, Shogo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (02) : 1009 - 1027
  • [48] SOME RESULTS ON PRECOMPACTNESS OF ORBITS OF DYNAMICAL-SYSTEMS
    WALKER, JA
    INFANTE, EF
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1975, 51 (01) : 56 - 67
  • [49] ASYMPTOTIC ORBITS AND INSTABILITY ZONES IN DYNAMICAL-SYSTEMS
    MAGNENAT, P
    ASTRONOMY & ASTROPHYSICS, 1979, 77 (03) : 332 - 340
  • [50] Maximum number of periodic orbits in parallel dynamical systems
    Aledo, Juan A.
    Diaz, Luis G.
    Martinez, Silvia
    Valverde, Jose C.
    INFORMATION SCIENCES, 2018, 468 : 63 - 71