Contraction of orbits in random dynamical systems on the circle

被引:0
|
作者
V. A. Kleptsyn
M. B. Nalskii
机构
[1] Moscow State University Independent University of Moscow,
[2] Moscow State University,undefined
关键词
dynamics on the circle; random dynamical system; skew product; attractor;
D O I
暂无
中图分类号
学科分类号
摘要
The paper deals with a theoretical justification of the effect, observed in computer experiments, of convergence of orbits (without tending to any particular point) in random dynamical systems on the circle. The corresponding theorem is proved under certain assumptions satisfied, in particular, in some C1-open domain in the space of random dynamical systems.
引用
收藏
页码:267 / 282
页数:15
相关论文
共 50 条
  • [31] Random dynamical systems in economics
    Majumdar, M
    Probability and Partial Differential Equations in Modern Applied Mathematics, 2005, 140 : 181 - 195
  • [32] Shadowing in random dynamical systems
    He, LF
    Zhu, YJ
    Zheng, HW
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 12 (02) : 355 - 362
  • [33] Sublinear random dynamical systems
    不详
    MONOTONE RANDOM SYSTEMS - THEORY AND APPLICATIONS, 2002, 1779 : 113 - 141
  • [34] Random Dynamical Systems with Inputs
    de Freitas, Michael Marcondes
    Sontag, Eduardo D.
    NONAUTONOMOUS DYNAMICAL SYSTEMS IN THE LIFE SCIENCES, 2013, 2102 : 41 - 87
  • [35] Random cyclic dynamical systems
    Adamaszek, Michal
    Adams, Henry
    Motta, Francis
    ADVANCES IN APPLIED MATHEMATICS, 2017, 83 : 1 - 23
  • [36] RECURRENCE FOR RANDOM DYNAMICAL SYSTEMS
    Marie, Philippe
    Rousseau, Jerome
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 30 (01) : 1 - 16
  • [37] Continuous random dynamical systems
    Horbacz, Katarzyna
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (02) : 623 - 637
  • [38] Random dynamical systems: a review
    Rabi Bhattacharya
    Mukul Majumdar
    Economic Theory, 2003, 23 : 13 - 38 (2004)
  • [39] Random conformal dynamical systems
    Deroin, Bertrand
    Kleptsyn, Victor
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (04) : 1043 - 1105
  • [40] Random Conformal Dynamical Systems
    Bertrand Deroin
    Victor Kleptsyn
    Geometric and Functional Analysis, 2007, 17 : 1043 - 1105