On the stability of periodic orbits in lattice dynamical systems

被引:1
|
作者
Fernandez, B
Morante, A
机构
[1] CNRS, Ctr Phys Theor, F-13288 Marseille 09, France
[2] UASLP, Inst Invest Comunicac Opt, San Luis Potosi, Mexico
来源
关键词
D O I
10.1080/14689360110062670
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The variation of the norm of a matrix operator in the space l(q)(2) when q varies is investigated. The linear part of a lattice dynamical system is a matrix operator. The consequences of this variation on the stability of periodic orbits in such systems is given.
引用
收藏
页码:247 / 252
页数:6
相关论文
共 50 条
  • [1] On the stability of periodic orbits in lattice dynamical systems
    Fernandez, Bastien
    Morante, Antonio
    [J]. Dynamical Systems, 2001, 16 (03) : 247 - 252
  • [2] ORBITS IN HIGHLY PERTURBED DYNAMICAL SYSTEMS .2. STABILITY OF PERIODIC ORBITS
    CONTOPOULOS, G
    [J]. ASTRONOMICAL JOURNAL, 1970, 75 (01): : 108 - +
  • [3] Periodic orbits and escapes in dynamical systems
    Contopoulos, George
    Harsoula, Mirella
    Lukes-Gerakopoulos, Georgios
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2012, 113 (03): : 255 - 278
  • [4] Periodic orbits and escapes in dynamical systems
    George Contopoulos
    Mirella Harsoula
    Georgios Lukes-Gerakopoulos
    [J]. Celestial Mechanics and Dynamical Astronomy, 2012, 113 : 255 - 278
  • [5] Periodic orbits on discrete dynamical systems
    Zhou, Z
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (6-9) : 1155 - 1161
  • [6] BIFURCATIONS OF PERIODIC ORBITS AND INTEGRABILITY OF DYNAMICAL SYSTEMS
    Kasperczuk, Stanislaw P.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (10): : 3345 - 3349
  • [7] ORBITS IN HIGHLY PERTURBED DYNAMICAL SYSTEMS .1. PERIODIC ORBITS
    CONTOPOULOS, G
    [J]. ASTRONOMICAL JOURNAL, 1970, 75 (01): : 96 - +
  • [8] Maximum number of periodic orbits in parallel dynamical systems
    Aledo, Juan A.
    Diaz, Luis G.
    Martinez, Silvia
    Valverde, Jose C.
    [J]. INFORMATION SCIENCES, 2018, 468 : 63 - 71
  • [9] Stabilization of unstable periodic orbits of chaotic dynamical systems
    Magnitskii, NA
    Sidorov, SV
    [J]. NONLINEAR DYNAMICS IN THE LIFE AND SOCIAL SCIENCES, 2001, 320 : 33 - 44
  • [10] Method for computing long periodic orbits of dynamical systems
    Drossos, L
    Ragos, O
    Vrahatis, MN
    Bountis, T
    [J]. PHYSICAL REVIEW E, 1996, 53 (01) : 1206 - 1211