Periodic orbits on discrete dynamical systems

被引:14
|
作者
Zhou, Z [1 ]
机构
[1] Hunan Univ, Dept Math Appl, Changsha 410082, Hunan, Peoples R China
关键词
periodic orbits; discrete dynamical systems; neural networks;
D O I
10.1016/S0898-1221(03)00075-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the discrete dynamical system Xn+1 = betax(n) - g(x(n)), n = 0, 1,..., arising as a discrete-time network of single neuron, where beta is the internal decay rate, g is a signal function. First, we consider the case where g is of McCulloch-Pitts nonlinearity. Periodic orbits are discussed according to different range of beta. Moreover, we can construct periodic orbits. Then, we consider the case where g is a sigmoid function. Sufficient conditions are obtained for (*) has periodic orbits of arbitrary periods and an example is also given to illustrate the theorem. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1155 / 1161
页数:7
相关论文
共 50 条
  • [1] Bifurcation equations for periodic orbits of implicit discrete dynamical systems
    Oliveira, Henrique M.
    NONLINEAR DYNAMICS, 2018, 91 (01) : 387 - 402
  • [2] Bifurcation equations for periodic orbits of implicit discrete dynamical systems
    Henrique M. Oliveira
    Nonlinear Dynamics, 2018, 91 : 387 - 402
  • [3] Convergence Time towards Periodic Orbits in Discrete Dynamical Systems
    San Martin, Jesus
    Porter, Mason A.
    PLOS ONE, 2014, 9 (04):
  • [4] Infinite dimensional Krawczyk operator for finding periodic orbits of discrete dynamical systems
    Galias, Zbigniew
    Zgliczynski, Piotr
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (12): : 4261 - 4272
  • [5] Periodic orbits and escapes in dynamical systems
    Contopoulos, George
    Harsoula, Mirella
    Lukes-Gerakopoulos, Georgios
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2012, 113 (03): : 255 - 278
  • [6] Periodic orbits and escapes in dynamical systems
    George Contopoulos
    Mirella Harsoula
    Georgios Lukes-Gerakopoulos
    Celestial Mechanics and Dynamical Astronomy, 2012, 113 : 255 - 278
  • [7] PERIODIC ORBITS OF DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS VIA POINCARE-MIRANDA THEOREM
    Gasull, Armengol
    Manosa, Victor
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (02): : 651 - 670
  • [8] Krawczyk method for proving the existence of periodic orbits of infinite dimensional discrete dynamical systems
    Galias, Z
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 657 - 662
  • [9] On the stability of periodic orbits in lattice dynamical systems
    Fernandez, B
    Morante, A
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2001, 16 (03): : 247 - 252
  • [10] On the stability of periodic orbits in lattice dynamical systems
    Fernandez, Bastien
    Morante, Antonio
    Dynamical Systems, 2001, 16 (03) : 247 - 252