Finite soluble groups satisfying the swap conjecture

被引:0
|
作者
Andrea Lucchini
机构
[1] Università degli Studi di Padova,Dipartimento di Matematica
来源
关键词
Generating graph; Swap conjecture; Soluble groups; 20D10; 20F05; 05C25;
D O I
暂无
中图分类号
学科分类号
摘要
For a d-generated finite group G, we consider the graph Δd(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _d(G)$$\end{document} (swap graph) in which the vertices are the ordered generating d-tuples and in which two vertices (x1,…,xd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x_1,\ldots ,x_d)$$\end{document} and (y1,…,yd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(y_1,\ldots ,y_d)$$\end{document} are adjacent if and only if they differ only by one entry. It was conjectured by Tennant and Turner that Δd(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _d(G)$$\end{document} is a connected graph. We prove that this conjecture is true if G is a soluble group satisfying some extra conditions, for example if the derived subgroup of G has odd order or is nilpotent.
引用
收藏
页码:907 / 915
页数:8
相关论文
共 50 条
  • [21] Some residually finite groups satisfying laws
    de Cornulier, Yves
    Mann, Avinoam
    GEOMETRIC GROUP THEORY, 2007, : 45 - +
  • [22] CLASSIFICATION OF FINITE GROUPS SATISFYING A MINIMAL CONDITION
    Li, S.
    Meng, W.
    SIBERIAN MATHEMATICAL JOURNAL, 2009, 50 (01) : 100 - 106
  • [23] On the regularity conjecture for the cohomology of finite groups
    Benson, David J.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2008, 51 : 273 - 284
  • [24] ON ALPERIN CONJECTURE FOR FINITE REDUCTIVE GROUPS
    LEHRER, GI
    THEVENAZ, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 315 (13): : 1347 - 1351
  • [25] CONJECTURE OF BACHMUTH AND MOCHIZUKI ON AUTOMORPHISMS OF SOLUBLE GROUPS
    HARTLEY, B
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1976, 28 (06): : 1302 - 1310
  • [26] Finite axiomatization of finite soluble groups
    Wilson, John S.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 74 : 566 - 582
  • [27] On Soluble Radicals of Finite Groups
    S. Yu. Bashun
    E. M. Palchik
    Ukrainian Mathematical Journal, 2020, 72 : 370 - 385
  • [28] ON SOLUBLE GROUPS OF FINITE RANK
    ZAITSEV, DI
    DOKLADY AKADEMII NAUK SSSR, 1968, 181 (01): : 13 - &
  • [29] A characterization of finite soluble groups
    Nikolov, Nikolay
    Segal, Dan
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 : 209 - 213
  • [30] On finite p-groups satisfying given laws
    Primož Moravec
    Monatshefte für Mathematik, 2019, 190 : 589 - 593