A characterization of finite soluble groups

被引:11
|
作者
Nikolov, Nikolay [1 ]
Segal, Dan
机构
[1] Univ Oxford New Coll, Oxford OX1 3BN, England
[2] Univ Oxford All Souls Coll, Oxford OX1 4AL, England
关键词
D O I
10.1112/blms/bdl028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite soluble group of order m and let w (x(1),..., x(n)) be a group word. Then the probability that w (g(1),..., g(n)) = 1 (where (g(1),..., g(n)) is a random n-tuple in G) is at least p(-(m-t)), where p is the largest prime divisor of m and t is the number of distinct primes dividing m. This contrasts with the case of a non-soluble group G, for which Abert has shown that the corresponding probability can take arbitrarily small positive values as n -> infinity.
引用
收藏
页码:209 / 213
页数:5
相关论文
共 50 条