Finite soluble groups satisfying the swap conjecture

被引:0
|
作者
Andrea Lucchini
机构
[1] Università degli Studi di Padova,Dipartimento di Matematica
来源
关键词
Generating graph; Swap conjecture; Soluble groups; 20D10; 20F05; 05C25;
D O I
暂无
中图分类号
学科分类号
摘要
For a d-generated finite group G, we consider the graph Δd(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _d(G)$$\end{document} (swap graph) in which the vertices are the ordered generating d-tuples and in which two vertices (x1,…,xd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x_1,\ldots ,x_d)$$\end{document} and (y1,…,yd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(y_1,\ldots ,y_d)$$\end{document} are adjacent if and only if they differ only by one entry. It was conjectured by Tennant and Turner that Δd(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _d(G)$$\end{document} is a connected graph. We prove that this conjecture is true if G is a soluble group satisfying some extra conditions, for example if the derived subgroup of G has odd order or is nilpotent.
引用
收藏
页码:907 / 915
页数:8
相关论文
共 50 条
  • [31] On residually finite groups satisfying an Engel type identity
    Silveira, Danilo
    MONATSHEFTE FUR MATHEMATIK, 2020, 193 (01): : 171 - 176
  • [32] On finite p-groups satisfying given laws
    Moravec, Primoz
    MONATSHEFTE FUR MATHEMATIK, 2019, 190 (03): : 589 - 593
  • [33] A characterization of the finite soluble groups
    Baumeister, B
    ARCHIV DER MATHEMATIK, 1999, 72 (03) : 167 - 176
  • [34] A characterization of finite soluble groups
    Li, Jinbao
    Yang, Yong
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (01) : 310 - 316
  • [35] On the cohomology of finite soluble groups
    Derek J. S. Robinson
    Archiv der Mathematik, 2015, 105 : 101 - 108
  • [36] On residually finite groups satisfying an Engel type identity
    Danilo Silveira
    Monatshefte für Mathematik, 2020, 193 : 171 - 176
  • [37] GENERATING FINITE SOLUBLE GROUPS
    KOVACS, LG
    SIM, HS
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1991, 2 (02): : 229 - 232
  • [38] FINITE SOLUBLE HYPERNORMALIZING GROUPS
    CAMINA, AR
    JOURNAL OF ALGEBRA, 1968, 8 (03) : 362 - &
  • [39] On Soluble Radicals of Finite Groups
    Bashun, S. Yu.
    Palchik, E. M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (03) : 370 - 385
  • [40] A characterization of the finite soluble groups
    Barbara Baumeister
    Archiv der Mathematik, 1999, 72 : 167 - 176