Finite soluble groups satisfying the swap conjecture

被引:0
|
作者
Andrea Lucchini
机构
[1] Università degli Studi di Padova,Dipartimento di Matematica
来源
关键词
Generating graph; Swap conjecture; Soluble groups; 20D10; 20F05; 05C25;
D O I
暂无
中图分类号
学科分类号
摘要
For a d-generated finite group G, we consider the graph Δd(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _d(G)$$\end{document} (swap graph) in which the vertices are the ordered generating d-tuples and in which two vertices (x1,…,xd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x_1,\ldots ,x_d)$$\end{document} and (y1,…,yd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(y_1,\ldots ,y_d)$$\end{document} are adjacent if and only if they differ only by one entry. It was conjectured by Tennant and Turner that Δd(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _d(G)$$\end{document} is a connected graph. We prove that this conjecture is true if G is a soluble group satisfying some extra conditions, for example if the derived subgroup of G has odd order or is nilpotent.
引用
收藏
页码:907 / 915
页数:8
相关论文
共 50 条
  • [41] COHOMOLOGY OF FINITE SOLUBLE GROUPS
    LINNELL, PA
    JOURNAL OF ALGEBRA, 1987, 107 (01) : 53 - 62
  • [42] PERMUTABILITY IN FINITE SOLUBLE GROUPS
    BALLESTERBOLINCHES, A
    PEREZRAMOS, MD
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1994, 115 : 393 - 396
  • [43] Finite Generalized Soluble Groups
    J. Huang
    B. Hu
    A. N. Skiba
    Algebra and Logic, 2019, 58 : 173 - 185
  • [44] FINITE-GROUPS SATISFYING A CERTAIN NORMALIZER CONDITION
    GARLAND, DW
    QUARTERLY JOURNAL OF MATHEMATICS, 1975, 26 (104): : 389 - 409
  • [45] A NOTE ON FINITE-GROUPS SATISFYING PERMUTIZER CONDITION
    ZHANG, JP
    KEXUE TONGBAO, 1986, 31 (06): : 363 - 365
  • [46] On injectors of finite soluble groups
    Guo, Wenbin
    Vorob'ev, N. T.
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (09) : 3200 - 3208
  • [47] On a class of finite soluble groups
    Ballester-Bolinches, Adolfo
    Cossey, John
    Li, Yangming
    JOURNAL OF GROUP THEORY, 2018, 21 (05) : 839 - 846
  • [48] Soluble Products of Finite Groups
    Cossey, John
    NOTE DI MATEMATICA, 2010, 30 : 1 - 7
  • [49] On finite products of soluble groups
    Amberg, B
    ISRAEL JOURNAL OF MATHEMATICS, 1998, 106 (1) : 93 - 108
  • [50] On the cohomology of finite soluble groups
    Robinson, Derek J. S.
    ARCHIV DER MATHEMATIK, 2015, 105 (02) : 101 - 108