Efficient parameter learning of Bayesian network classifiers

被引:0
|
作者
Nayyar A. Zaidi
Geoffrey I. Webb
Mark J. Carman
François Petitjean
Wray Buntine
Mike Hynes
Hans De Sterck
机构
[1] Monash University,Faculty of Information Technology
[2] University of Waterloo,Department of Applied Mathematics
[3] Monash University,School of Mathematical Sciences
来源
Machine Learning | 2017年 / 106卷
关键词
Bayesian Network Classifiers; Parameter Learning Task; Discriminative Objective Function; NB Structure; Naive Bayes (NB);
D O I
暂无
中图分类号
学科分类号
摘要
Recent advances have demonstrated substantial benefits from learning with both generative and discriminative parameters. On the one hand, generative approaches address the estimation of the parameters of the joint distribution—P(y,x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{P}(y,\mathbf{x})$$\end{document}, which for most network types is very computationally efficient (a notable exception to this are Markov networks) and on the other hand, discriminative approaches address the estimation of the parameters of the posterior distribution—and, are more effective for classification, since they fit P(y|x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{P}(y|\mathbf{x})$$\end{document} directly. However, discriminative approaches are less computationally efficient as the normalization factor in the conditional log-likelihood precludes the derivation of closed-form estimation of parameters. This paper introduces a new discriminative parameter learning method for Bayesian network classifiers that combines in an elegant fashion parameters learned using both generative and discriminative methods. The proposed method is discriminative in nature, but uses estimates of generative probabilities to speed-up the optimization process. A second contribution is to propose a simple framework to characterize the parameter learning task for Bayesian network classifiers. We conduct an extensive set of experiments on 72 standard datasets and demonstrate that our proposed discriminative parameterization provides an efficient alternative to other state-of-the-art parameterizations.
引用
收藏
页码:1289 / 1329
页数:40
相关论文
共 50 条
  • [41] A Review of Parameter Learning Methods in Bayesian Network
    Ji, Zhiwei
    Xia, Qibiao
    Meng, Guanmin
    [J]. ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, ICIC 2015, PT III, 2015, 9227 : 3 - 12
  • [42] Accurate parameter estimation for Bayesian network classifiers using hierarchical Dirichlet processes
    Petitjean, Francois
    Buntine, Wray
    Webb, Geoffrey I.
    Zaidi, Nayyar
    [J]. MACHINE LEARNING, 2018, 107 (8-10) : 1303 - 1331
  • [43] Accurate parameter estimation for Bayesian network classifiers using hierarchical Dirichlet processes
    François Petitjean
    Wray Buntine
    Geoffrey I. Webb
    Nayyar Zaidi
    [J]. Machine Learning, 2018, 107 : 1303 - 1331
  • [44] On Resource-Efficient Bayesian Network Classifiers and Deep Neural Networks
    Roth, Wolfgang
    Pernkopf, Franz
    Schindler, Gunther
    Froening, Holger
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 10297 - 10304
  • [45] Approximate Bayesian network classifiers
    Slezak, D
    Wróblewski, J
    [J]. ROUGH SETS AND CURRENT TRENDS IN COMPUTING, PROCEEDINGS, 2002, 2475 : 365 - 372
  • [46] Boosted Bayesian network classifiers
    Jing, Yushi
    Pavlovic, Vladimir
    Rehg, James M.
    [J]. MACHINE LEARNING, 2008, 73 (02) : 155 - 184
  • [47] Adaptive Bayesian network classifiers
    Castillo, Gladys
    Gama, Joao
    [J]. INTELLIGENT DATA ANALYSIS, 2009, 13 (01) : 39 - 59
  • [48] Comparing Bayesian network classifiers
    Cheng, J
    Greiner, R
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 1999, : 101 - 108
  • [49] Boosted Bayesian network classifiers
    Yushi Jing
    Vladimir Pavlović
    James M. Rehg
    [J]. Machine Learning, 2008, 73 : 155 - 184
  • [50] Bayesian Network Parameter Learning Method Based on Transfer Learning
    Wang, Shu
    Guan, Zhan-Xu
    Wang, Jing
    Sun, Xiao-Hui
    [J]. Dongbei Daxue Xuebao/Journal of Northeastern University, 2021, 42 (04): : 509 - 515