Efficient parameter learning of Bayesian network classifiers

被引:0
|
作者
Nayyar A. Zaidi
Geoffrey I. Webb
Mark J. Carman
François Petitjean
Wray Buntine
Mike Hynes
Hans De Sterck
机构
[1] Monash University,Faculty of Information Technology
[2] University of Waterloo,Department of Applied Mathematics
[3] Monash University,School of Mathematical Sciences
来源
Machine Learning | 2017年 / 106卷
关键词
Bayesian Network Classifiers; Parameter Learning Task; Discriminative Objective Function; NB Structure; Naive Bayes (NB);
D O I
暂无
中图分类号
学科分类号
摘要
Recent advances have demonstrated substantial benefits from learning with both generative and discriminative parameters. On the one hand, generative approaches address the estimation of the parameters of the joint distribution—P(y,x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{P}(y,\mathbf{x})$$\end{document}, which for most network types is very computationally efficient (a notable exception to this are Markov networks) and on the other hand, discriminative approaches address the estimation of the parameters of the posterior distribution—and, are more effective for classification, since they fit P(y|x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{P}(y|\mathbf{x})$$\end{document} directly. However, discriminative approaches are less computationally efficient as the normalization factor in the conditional log-likelihood precludes the derivation of closed-form estimation of parameters. This paper introduces a new discriminative parameter learning method for Bayesian network classifiers that combines in an elegant fashion parameters learned using both generative and discriminative methods. The proposed method is discriminative in nature, but uses estimates of generative probabilities to speed-up the optimization process. A second contribution is to propose a simple framework to characterize the parameter learning task for Bayesian network classifiers. We conduct an extensive set of experiments on 72 standard datasets and demonstrate that our proposed discriminative parameterization provides an efficient alternative to other state-of-the-art parameterizations.
引用
收藏
页码:1289 / 1329
页数:40
相关论文
共 50 条
  • [31] Bayesian Network Classifiers
    Nir Friedman
    Dan Geiger
    Moises Goldszmidt
    [J]. Machine Learning, 1997, 29 : 131 - 163
  • [32] Learning Bayesian network classifiers using ant colony optimization
    Salama, Khalid M.
    Freitas, Alex A.
    [J]. SWARM INTELLIGENCE, 2013, 7 (2-3) : 229 - 254
  • [33] Discriminative vs. generative learning of Bayesian network classifiers
    Santafe, Guzman
    Lozano, Jose A.
    Larranaga, Pedro
    [J]. Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Proceedings, 2007, 4724 : 453 - 464
  • [34] Bandit-Based Structure Learning for Bayesian Network Classifiers
    Eghbali, Sepehr
    Ashtiani, Mohammad Hassan Zokaei
    Ahmadabadi, Majid Nili
    Araabi, Babak Nadjar
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2012, PT II, 2012, 7664 : 349 - 356
  • [35] Inference and learning in multi-dimensional Bayesian network classifiers
    de Waal, Peter R.
    van der Gaag, Linda C.
    [J]. SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2007, 4724 : 501 - +
  • [36] Discretizing environmental data for learning Bayesian-network classifiers
    Ropero, R. F.
    Renooij, S.
    van der Gaag, L. C.
    [J]. ECOLOGICAL MODELLING, 2018, 368 : 391 - 403
  • [37] Learning Bayesian network classifiers using ant colony optimization
    Khalid M. Salama
    Alex A. Freitas
    [J]. Swarm Intelligence, 2013, 7 : 229 - 254
  • [38] Learning Bayesian Network Classifiers to Minimize Class Variable Parameters
    Sugahara, Shouta
    Kato, Koya
    Ueno, Maomi
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 18, 2024, : 20540 - 20549
  • [39] An error-driven learning algorithm for Bayesian network classifiers
    Gu, P
    Zhu, QS
    Li, YF
    [J]. Proceedings of the 11th Joint International Computer Conference, 2005, : 412 - 415
  • [40] Learning Continuous Time Bayesian Network Classifiers Using MapReduce
    Villa, Simone
    Rossetti, Marco
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2014, 62 (03): : 1 - 25