Efficient parameter learning of Bayesian network classifiers

被引:0
|
作者
Nayyar A. Zaidi
Geoffrey I. Webb
Mark J. Carman
François Petitjean
Wray Buntine
Mike Hynes
Hans De Sterck
机构
[1] Monash University,Faculty of Information Technology
[2] University of Waterloo,Department of Applied Mathematics
[3] Monash University,School of Mathematical Sciences
来源
Machine Learning | 2017年 / 106卷
关键词
Bayesian Network Classifiers; Parameter Learning Task; Discriminative Objective Function; NB Structure; Naive Bayes (NB);
D O I
暂无
中图分类号
学科分类号
摘要
Recent advances have demonstrated substantial benefits from learning with both generative and discriminative parameters. On the one hand, generative approaches address the estimation of the parameters of the joint distribution—P(y,x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{P}(y,\mathbf{x})$$\end{document}, which for most network types is very computationally efficient (a notable exception to this are Markov networks) and on the other hand, discriminative approaches address the estimation of the parameters of the posterior distribution—and, are more effective for classification, since they fit P(y|x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{P}(y|\mathbf{x})$$\end{document} directly. However, discriminative approaches are less computationally efficient as the normalization factor in the conditional log-likelihood precludes the derivation of closed-form estimation of parameters. This paper introduces a new discriminative parameter learning method for Bayesian network classifiers that combines in an elegant fashion parameters learned using both generative and discriminative methods. The proposed method is discriminative in nature, but uses estimates of generative probabilities to speed-up the optimization process. A second contribution is to propose a simple framework to characterize the parameter learning task for Bayesian network classifiers. We conduct an extensive set of experiments on 72 standard datasets and demonstrate that our proposed discriminative parameterization provides an efficient alternative to other state-of-the-art parameterizations.
引用
收藏
页码:1289 / 1329
页数:40
相关论文
共 50 条
  • [11] bnclassify: Learning Bayesian Network Classifiers
    Mihaljevic, Bojan
    Bielza, Concha
    Larranaga, Pedro
    [J]. R JOURNAL, 2018, 10 (02): : 455 - 468
  • [12] Widened Learning of Bayesian Network Classifiers
    Sampson, Oliver R.
    Berthold, Michael R.
    [J]. ADVANCES IN INTELLIGENT DATA ANALYSIS XV, 2016, 9897 : 215 - 225
  • [13] Discriminative learning of Bayesian network classifiers
    Pernkopf, Franz
    [J]. PROCEEDINGS OF THE IASTED INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND APPLICATIONS, 2007, : 422 - 427
  • [14] Learning Bayesian network classifiers by risk minimization
    Kelner, Roy
    Lerner, Boaz
    [J]. International Journal of Approximate Reasoning, 2012, 53 (02): : 248 - 272
  • [15] Learning Bayesian network classifiers by risk minimization
    Kelner, Roy
    Lerner, Boaz
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2012, 53 (02) : 248 - 272
  • [16] Adaptive learning algorithms for Bayesian network classifiers
    Departamento de Matemática, CEOC, Universidade de Aveiro, Aveiro 3810-193, Portugal
    [J]. AI Commun, 2008, 1 (87-88):
  • [17] Adaptive learning algorithms for Bayesian network classifiers
    Castillo, Gladys
    [J]. AI COMMUNICATIONS, 2008, 21 (01) : 87 - 88
  • [18] Learning continuous time Bayesian network classifiers
    Codecasa, Daniele
    Stella, Fabio
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2014, 55 (08) : 1728 - 1746
  • [19] Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data
    Van den Broeck, Guy
    Mohan, Karthika
    Choi, Arthur
    Darwiche, Adnan
    Pearl, Judea
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2015, : 161 - 170
  • [20] Efficient Approximation of the Conditional Relative Entropy with Applications to Discriminative Learning of Bayesian Network Classifiers
    Carvalho, Alexandra M.
    Adao, Pedro
    Mateus, Paulo
    [J]. ENTROPY, 2013, 15 (07) : 2716 - 2735