Efficient parameter learning of Bayesian network classifiers

被引:0
|
作者
Nayyar A. Zaidi
Geoffrey I. Webb
Mark J. Carman
François Petitjean
Wray Buntine
Mike Hynes
Hans De Sterck
机构
[1] Monash University,Faculty of Information Technology
[2] University of Waterloo,Department of Applied Mathematics
[3] Monash University,School of Mathematical Sciences
来源
Machine Learning | 2017年 / 106卷
关键词
Bayesian Network Classifiers; Parameter Learning Task; Discriminative Objective Function; NB Structure; Naive Bayes (NB);
D O I
暂无
中图分类号
学科分类号
摘要
Recent advances have demonstrated substantial benefits from learning with both generative and discriminative parameters. On the one hand, generative approaches address the estimation of the parameters of the joint distribution—P(y,x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{P}(y,\mathbf{x})$$\end{document}, which for most network types is very computationally efficient (a notable exception to this are Markov networks) and on the other hand, discriminative approaches address the estimation of the parameters of the posterior distribution—and, are more effective for classification, since they fit P(y|x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{P}(y|\mathbf{x})$$\end{document} directly. However, discriminative approaches are less computationally efficient as the normalization factor in the conditional log-likelihood precludes the derivation of closed-form estimation of parameters. This paper introduces a new discriminative parameter learning method for Bayesian network classifiers that combines in an elegant fashion parameters learned using both generative and discriminative methods. The proposed method is discriminative in nature, but uses estimates of generative probabilities to speed-up the optimization process. A second contribution is to propose a simple framework to characterize the parameter learning task for Bayesian network classifiers. We conduct an extensive set of experiments on 72 standard datasets and demonstrate that our proposed discriminative parameterization provides an efficient alternative to other state-of-the-art parameterizations.
引用
收藏
页码:1289 / 1329
页数:40
相关论文
共 50 条
  • [21] Bayesian network learning with parameter constraints
    Niculescu, Radu Stefan
    Mitchell, Tom M.
    Rao, R. Bharat
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 1357 - 1383
  • [22] Learning Bayesian network classifiers from label proportions
    Hernandez-Gonzalez, Jeronimo
    Inza, Inaki
    Lozano, Jose A.
    [J]. PATTERN RECOGNITION, 2013, 46 (12) : 3425 - 3440
  • [23] An adaptive prequential learning framework for Bayesian Network Classifiers
    Castillo, Gladys
    Gama, Joao
    [J]. KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2006, PROCEEDINGS, 2006, 4213 : 67 - 78
  • [24] Bayesian network learning with parameter constraints
    Computer Aided Diagnosis and Therapy Group, Siemens Medical Solutions, 51 Valley Stream Parkway, Malvern, PA 19355, United States
    不详
    [J]. J. Mach. Learn. Res., 2006, (1357-1383):
  • [25] MAXIMUM MARGIN STRUCTURE LEARNING OF BAYESIAN NETWORK CLASSIFIERS
    Pernkopf, Franz
    Wohlmayr, Michael
    Muecke, Manfred
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2076 - 2079
  • [26] Learning Attentive Fusion of Multiple Bayesian Network Classifiers
    Eghbali, Sepehr
    Ahmadabadi, Majid Nili
    Araabi, Babak Nadjar
    Mirian, Maryam
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2012, PT III, 2012, 7665 : 133 - 140
  • [27] Differentiable TAN Structure Learning for Bayesian Network Classifiers
    Roth, Wolfgang
    Pernkopf, Franz
    [J]. INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 389 - 400
  • [28] Hierarchical Independence Thresholding for learning Bayesian network classifiers
    Liu, Yang
    Wang, Limin
    Mammadov, Musa
    Chen, Shenglei
    Wang, Gaojie
    Qi, Sikai
    Sun, Minghui
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 212
  • [29] Dynamic embeddings for efficient parameter learning of Bayesian network with multiple latent variables
    Qi, Zhiwei
    Yue, Kun
    Duan, Liang
    Hu, Kuang
    Liang, Zhihong
    [J]. INFORMATION SCIENCES, 2022, 590 : 198 - 216
  • [30] Bayesian network classifiers
    Friedman, N
    Geiger, D
    Goldszmidt, M
    [J]. MACHINE LEARNING, 1997, 29 (2-3) : 131 - 163