Efficient parameter learning of Bayesian network classifiers

被引:0
|
作者
Nayyar A. Zaidi
Geoffrey I. Webb
Mark J. Carman
François Petitjean
Wray Buntine
Mike Hynes
Hans De Sterck
机构
[1] Monash University,Faculty of Information Technology
[2] University of Waterloo,Department of Applied Mathematics
[3] Monash University,School of Mathematical Sciences
来源
Machine Learning | 2017年 / 106卷
关键词
Bayesian Network Classifiers; Parameter Learning Task; Discriminative Objective Function; NB Structure; Naive Bayes (NB);
D O I
暂无
中图分类号
学科分类号
摘要
Recent advances have demonstrated substantial benefits from learning with both generative and discriminative parameters. On the one hand, generative approaches address the estimation of the parameters of the joint distribution—P(y,x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{P}(y,\mathbf{x})$$\end{document}, which for most network types is very computationally efficient (a notable exception to this are Markov networks) and on the other hand, discriminative approaches address the estimation of the parameters of the posterior distribution—and, are more effective for classification, since they fit P(y|x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{P}(y|\mathbf{x})$$\end{document} directly. However, discriminative approaches are less computationally efficient as the normalization factor in the conditional log-likelihood precludes the derivation of closed-form estimation of parameters. This paper introduces a new discriminative parameter learning method for Bayesian network classifiers that combines in an elegant fashion parameters learned using both generative and discriminative methods. The proposed method is discriminative in nature, but uses estimates of generative probabilities to speed-up the optimization process. A second contribution is to propose a simple framework to characterize the parameter learning task for Bayesian network classifiers. We conduct an extensive set of experiments on 72 standard datasets and demonstrate that our proposed discriminative parameterization provides an efficient alternative to other state-of-the-art parameterizations.
引用
收藏
页码:1289 / 1329
页数:40
相关论文
共 50 条
  • [1] Efficient parameter learning of Bayesian network classifiers
    Zaidi, Nayyar A.
    Webb, Geoffrey I.
    Carman, Mark J.
    Petitjean, Francois
    Buntine, Wray
    Hynes, Mike
    De Sterck, Hans
    [J]. MACHINE LEARNING, 2017, 106 (9-10) : 1289 - 1329
  • [2] On Discriminative Parameter Learning of Bayesian Network Classifiers
    Pernkopf, Franz
    Wohlmayr, Michael
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II, 2009, 5782 : 221 - 237
  • [3] Discriminative parameter learning of general Bayesian network classifiers
    Shen, B
    Su, XY
    Greiner, R
    Musilek, P
    Cheng, C
    [J]. 15TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2003, : 296 - 305
  • [4] Efficient parameter learning for Bayesian Network classifiers following the Apache Spark Dataframes paradigm
    Akarepis, Ioannis
    Bompotas, Agorakis
    Makris, Christos
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (08) : 4437 - 4461
  • [5] Parameter Learning of Bayesian Network Classifiers Under Computational Constraints
    Tschiatschek, Sebastian
    Pernkopf, Franz
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2015, PT I, 2015, 9284 : 86 - 101
  • [6] Efficient learning of Bayesian network classifiers - An extension to the TAN classifier
    Carvalho, Alexandra M.
    Oliveira, Arlindo L.
    Sagot, Marie-France
    [J]. AI 2007: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4830 : 16 - +
  • [7] Efficient Heuristics for Discriminative Structure Learning of Bayesian Network Classifiers
    Pernkopf, Franz
    Bilmes, Jeff A.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 2323 - 2360
  • [8] An Improved De-noising Algorithm for Bayesian Network Classifiers Parameter Learning
    Kang, Qing
    Wang, Li-Qing
    Xu, Yong-Yue
    Li, Hong
    An, Hong-Ping
    Wang, Xing-Chao
    Yao, Han-Bing
    [J]. 2016 INTERNATIONAL CONFERENCE ON SERVICE SCIENCE, TECHNOLOGY AND ENGINEERING (SSTE 2016), 2016, : 161 - 167
  • [9] Learning Bayesian classifiers from dependency network classifiers
    Gamez, Jose A.
    Mateo, Juan L.
    Puerta, Jose M.
    [J]. ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT 1, 2007, 4431 : 806 - +
  • [10] Scalable Learning of Bayesian Network Classifiers
    Martinez, Ana M.
    Webb, Geoffrey I.
    Chen, Shenglei
    Zaidi, Nayyar A.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17