Proofs of some conjectures of Chan on Appell–Lerch sums

被引:0
|
作者
Nayandeep Deka Baruah
Nilufar Mana Begum
机构
[1] Tezpur University,Department of Mathematical Sciences
来源
The Ramanujan Journal | 2020年 / 51卷
关键词
Appell–Lerch sum; Theta function; Mock theta function; Congruence; Primary 11P83; Secondary 33D15;
D O I
暂无
中图分类号
学科分类号
摘要
On page 3 of his lost notebook, Ramanujan defines the Appell–Lerch sum ϕ(q):=∑n=0∞(-q;q)2nqn+1(q;q2)n+12,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \phi (q):=\sum _{n=0}^\infty \dfrac{(-q;q)_{2n}q^{n+1}}{(q;q^2)_{n+1}^2}, \end{aligned}$$\end{document}which is connected to some of his sixth order mock theta functions. Let ∑n=1∞a(n)qn:=ϕ(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{n=1}^\infty a(n)q^n:=\phi (q)$$\end{document}. In this paper, we find a representation of the generating function of a(10n+9)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(10n+9)$$\end{document} in terms of q-products. As corollaries, we deduce the congruences a(50n+19)≡a(50n+39)≡a(50n+49)≡0(mod25)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(50n+19)\equiv a(50n+39)\equiv a(50n+49)\equiv 0~(\text {mod}~25)$$\end{document} as well as a(1250n+250r+219)≡0(mod125)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(1250n+250r+219)\equiv 0~(\text {mod}~125)$$\end{document}, where r=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=1$$\end{document}, 3, and 4. The first three congruences were conjectured by Chan in 2012, whereas the congruences modulo 125 are new. We also prove two more conjectural congruences of Chan for the coefficients of two Appell–Lerch sums.
引用
收藏
页码:99 / 115
页数:16
相关论文
共 50 条
  • [1] Proofs of some conjectures of Chan on Appell-Lerch sums
    Baruah, Nayandeep Deka
    Begum, Nilufar Mana
    [J]. RAMANUJAN JOURNAL, 2020, 51 (01): : 99 - 115
  • [2] Generalizations of some conjectures of Chan on congruences for Appell-Lerch sums
    Qu, Y. K.
    Wang, Y. J.
    Yao, Olivia X. M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 460 (01) : 232 - 238
  • [3] Proof of a conjectural congruence of Chan for Appell-Lerch sums
    Fan, Yan
    Wang, Liuquan
    Xia, Ernest X. W.
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2021, 17 (04) : 1003 - 1011
  • [4] Arithmetic properties for Appell–Lerch sums
    W. H. Ding
    Ernest X. W. Xia
    [J]. The Ramanujan Journal, 2021, 56 : 763 - 783
  • [5] Some identities for Appell–Lerch sums and a universal mock theta function
    Richard J. McIntosh
    [J]. The Ramanujan Journal, 2018, 45 : 767 - 779
  • [6] Mock theta functions and Appell–Lerch sums
    Bin Chen
    [J]. Journal of Inequalities and Applications, 2018
  • [7] Dyson’s ranks and Appell–Lerch sums
    Dean Hickerson
    Eric Mortenson
    [J]. Mathematische Annalen, 2017, 367 : 373 - 395
  • [8] Ranks, cranks for overpartitions and Appell–Lerch sums
    Min Bian
    Houqing Fang
    Xiao Qian Huang
    Olivia X. M. Yao
    [J]. The Ramanujan Journal, 2022, 57 : 823 - 844
  • [9] Arithmetic properties for Appell-Lerch sums
    Ding, W. H.
    Xia, Ernest X. W.
    [J]. RAMANUJAN JOURNAL, 2021, 56 (03): : 763 - 783
  • [10] TWO CONGRUENCES FOR APPELL-LERCH SUMS
    Chan, Song Heng
    Mao, Renrong
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (01) : 111 - 123