Proofs of some conjectures of Chan on Appell–Lerch sums

被引:0
|
作者
Nayandeep Deka Baruah
Nilufar Mana Begum
机构
[1] Tezpur University,Department of Mathematical Sciences
来源
The Ramanujan Journal | 2020年 / 51卷
关键词
Appell–Lerch sum; Theta function; Mock theta function; Congruence; Primary 11P83; Secondary 33D15;
D O I
暂无
中图分类号
学科分类号
摘要
On page 3 of his lost notebook, Ramanujan defines the Appell–Lerch sum ϕ(q):=∑n=0∞(-q;q)2nqn+1(q;q2)n+12,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \phi (q):=\sum _{n=0}^\infty \dfrac{(-q;q)_{2n}q^{n+1}}{(q;q^2)_{n+1}^2}, \end{aligned}$$\end{document}which is connected to some of his sixth order mock theta functions. Let ∑n=1∞a(n)qn:=ϕ(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{n=1}^\infty a(n)q^n:=\phi (q)$$\end{document}. In this paper, we find a representation of the generating function of a(10n+9)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(10n+9)$$\end{document} in terms of q-products. As corollaries, we deduce the congruences a(50n+19)≡a(50n+39)≡a(50n+49)≡0(mod25)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(50n+19)\equiv a(50n+39)\equiv a(50n+49)\equiv 0~(\text {mod}~25)$$\end{document} as well as a(1250n+250r+219)≡0(mod125)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(1250n+250r+219)\equiv 0~(\text {mod}~125)$$\end{document}, where r=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=1$$\end{document}, 3, and 4. The first three congruences were conjectured by Chan in 2012, whereas the congruences modulo 125 are new. We also prove two more conjectural congruences of Chan for the coefficients of two Appell–Lerch sums.
引用
收藏
页码:99 / 115
页数:16
相关论文
共 50 条
  • [21] Generalizations of Mock Theta Functions and Appell-Lerch Sums
    Cui, Su-Ping
    Gu, Nancy S. S.
    Tang, Dazhao
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (05)
  • [22] Automatic proofs of some conjectures of Sun on the relations between sums of squares and sums of triangular numbers
    Olivia X. M. Yao
    Eric H. Liu
    Min Bian
    [J]. The Ramanujan Journal, 2022, 59 : 365 - 378
  • [23] Automatic proofs of some conjectures of Sun on the relations between sums of squares and sums of triangular numbers
    Yao, Olivia X. M.
    Liu, Eric H.
    Bian, Min
    [J]. RAMANUJAN JOURNAL, 2022, 59 (02): : 365 - 378
  • [24] Proofs of some conjectures of Chan-Mao-Osburn on Beck's partition statistics
    Jin, Liu Xin
    Liu, Eric H.
    Xia, Ernest X. W.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)
  • [25] On the dual nature of partial theta functions and Appell-Lerch sums
    Mortenson, Eric T.
    [J]. ADVANCES IN MATHEMATICS, 2014, 264 : 236 - 260
  • [26] Heeke-type double sums, Appell Lerch sums, and mock theta functions, I
    Hickerson, Dean R.
    Mortenson, Eric T.
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 109 : 382 - 422
  • [27] PROOFS OF SOME CONJECTURES ON PERMANENTS
    LIEB, EH
    [J]. JOURNAL OF MATHEMATICS AND MECHANICS, 1966, 16 (02): : 127 - &
  • [28] Ramanujan’s 1ψ1 summation, Hecke-type double sums, and Appell–Lerch sums
    Eric Mortenson
    [J]. The Ramanujan Journal, 2012, 29 : 121 - 133
  • [29] Proofs of Some Conjectures of Z. -H. Sun on Relations Between Sums of Squares and Sums of Triangular Numbers
    Baruah, Nayandeep Deka
    Kaur, Mandeep
    Kim, Mingyu
    Oh, Byeong-Kweon
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (01): : 11 - 38
  • [30] Proofs of Some Conjectures of Z. -H. Sun on Relations Between Sums of Squares and Sums of Triangular Numbers
    Nayandeep Deka Baruah
    Mandeep Kaur
    Mingyu Kim
    Byeong-Kweon Oh
    [J]. Indian Journal of Pure and Applied Mathematics, 2020, 51 : 11 - 38