Proofs of some conjectures of Chan on Appell–Lerch sums

被引:0
|
作者
Nayandeep Deka Baruah
Nilufar Mana Begum
机构
[1] Tezpur University,Department of Mathematical Sciences
来源
The Ramanujan Journal | 2020年 / 51卷
关键词
Appell–Lerch sum; Theta function; Mock theta function; Congruence; Primary 11P83; Secondary 33D15;
D O I
暂无
中图分类号
学科分类号
摘要
On page 3 of his lost notebook, Ramanujan defines the Appell–Lerch sum ϕ(q):=∑n=0∞(-q;q)2nqn+1(q;q2)n+12,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \phi (q):=\sum _{n=0}^\infty \dfrac{(-q;q)_{2n}q^{n+1}}{(q;q^2)_{n+1}^2}, \end{aligned}$$\end{document}which is connected to some of his sixth order mock theta functions. Let ∑n=1∞a(n)qn:=ϕ(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{n=1}^\infty a(n)q^n:=\phi (q)$$\end{document}. In this paper, we find a representation of the generating function of a(10n+9)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(10n+9)$$\end{document} in terms of q-products. As corollaries, we deduce the congruences a(50n+19)≡a(50n+39)≡a(50n+49)≡0(mod25)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(50n+19)\equiv a(50n+39)\equiv a(50n+49)\equiv 0~(\text {mod}~25)$$\end{document} as well as a(1250n+250r+219)≡0(mod125)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(1250n+250r+219)\equiv 0~(\text {mod}~125)$$\end{document}, where r=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=1$$\end{document}, 3, and 4. The first three congruences were conjectured by Chan in 2012, whereas the congruences modulo 125 are new. We also prove two more conjectural congruences of Chan for the coefficients of two Appell–Lerch sums.
引用
收藏
页码:99 / 115
页数:16
相关论文
共 50 条
  • [31] Ramanujan's 1 ψ 1 summation, Hecke-type double sums, and Appell-Lerch sums
    Mortenson, Eric
    [J]. RAMANUJAN JOURNAL, 2012, 29 (1-3): : 121 - 133
  • [32] SOME CONJECTURES CONCERNING GAUSS SUMS
    LOXTON, JH
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1978, 297 : 153 - 158
  • [33] Properties of the Appell–Lerch function (I)
    J. G. Bradley-Thrush
    [J]. The Ramanujan Journal, 2022, 57 : 291 - 367
  • [34] Proofs of some conjectures on the reciprocals of the Ramanujan–Gordon identities
    Min Bian
    Dazhao Tang
    Ernest X. W. Xia
    Fanggang Xue
    [J]. The Ramanujan Journal, 2021, 55 : 497 - 515
  • [35] THE PROOFS OF SOME CONJECTURES ON HIGHER DIMENSIONAL HADAMARD MATRICES
    杨义先
    [J]. Science Bulletin, 1986, (24) : 1662 - 1667
  • [36] Properties of the Appell-Lerch function (I)
    Bradley-Thrush, J. G.
    [J]. RAMANUJAN JOURNAL, 2022, 57 (01): : 291 - 367
  • [37] Proofs for some conjectures of Rajaratnam and Takawira on the peakedness of handoff traffic
    van Doorn, EA
    Ta, ATK
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2003, 52 (04) : 953 - 957
  • [38] THE PROOFS OF SOME CONJECTURES ON HIGHER DIMENSIONAL HADAMARD-MATRICES
    YANG, YX
    [J]. KEXUE TONGBAO, 1986, 31 (24): : 1662 - 1667
  • [39] Proofs of some conjectures on the reciprocals of the Ramanujan-Gordon identities
    Bian, Min
    Tang, Dazhao
    Xia, Ernest X. W.
    Xue, Fanggang
    [J]. RAMANUJAN JOURNAL, 2021, 55 (02): : 497 - 515
  • [40] Automatic Sequences in Negative Bases and Proofs of Some Conjectures of Shevelev
    Shallit, Jeffrey
    Shan, Sonja Linghui
    Yang, Kai Hsiang
    [J]. RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2023, 57