Mock theta functions and Appell–Lerch sums

被引:0
|
作者
Bin Chen
机构
[1] Shandong University,School of Mathematics
[2] Weinan Normal University,School of Mathematics and Physics
关键词
Mock theta functions; Bilateral series; Appell–Lerch sums; 11B65; 11F27; 11F03;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, Mortenson (Proc. Edinb. Math. Soc. 4:1–13, 2015) explored the bilateral series in terms of Appell–Lerch sums for the universal mock theta function g2(x,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g_{2}{(x,q)}$\end{document}. The purpose of this paper is to consider the bilateral series for the universal mock theta function g3(x,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g_{3}{(x,q)}$\end{document}. As a result, we present the bilateral series associated with the odd order mock theta functions in terms of Appell–Lerch sums. A very interesting congruence relationship of the bilateral series B(ω;q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B(\omega;q)$\end{document} for the third order mock theta function ω(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega(q)$\end{document} is established. The inner relationships between the two-group bilateral series of the fifth order mock theta functions are obtained as applications.
引用
收藏
相关论文
共 50 条
  • [1] Generalizations of Mock Theta Functions and Appell–Lerch Sums
    Su-Ping Cui
    Nancy S. S. Gu
    Dazhao Tang
    [J]. Bulletin of the Iranian Mathematical Society, 2023, 49
  • [2] Mock theta functions and Appell-Lerch sums
    Chen, Bin
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [3] Generalizations of Mock Theta Functions and Appell-Lerch Sums
    Cui, Su-Ping
    Gu, Nancy S. S.
    Tang, Dazhao
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (05)
  • [4] Heeke-type double sums, Appell Lerch sums, and mock theta functions, I
    Hickerson, Dean R.
    Mortenson, Eric T.
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 109 : 382 - 422
  • [5] Some identities for Appell–Lerch sums and a universal mock theta function
    Richard J. McIntosh
    [J]. The Ramanujan Journal, 2018, 45 : 767 - 779
  • [6] Some identities for Appell-Lerch sums and a universal mock theta function
    McIntosh, Richard J.
    [J]. RAMANUJAN JOURNAL, 2018, 45 (03): : 767 - 779
  • [7] On the dual nature of partial theta functions and Appell-Lerch sums
    Mortenson, Eric T.
    [J]. ADVANCES IN MATHEMATICS, 2014, 264 : 236 - 260
  • [8] On the mock-theta behavior of Appell-Lerch series
    Zhang, Changgui
    [J]. COMPTES RENDUS MATHEMATIQUE, 2015, 353 (12) : 1067 - 1073
  • [9] Arithmetic properties for Appell–Lerch sums
    W. H. Ding
    Ernest X. W. Xia
    [J]. The Ramanujan Journal, 2021, 56 : 763 - 783
  • [10] Dyson’s ranks and Appell–Lerch sums
    Dean Hickerson
    Eric Mortenson
    [J]. Mathematische Annalen, 2017, 367 : 373 - 395