Ranks, cranks for overpartitions and Appell–Lerch sums

被引:0
|
作者
Min Bian
Houqing Fang
Xiao Qian Huang
Olivia X. M. Yao
机构
[1] Jiangsu University,Department of Mathematics
来源
The Ramanujan Journal | 2022年 / 57卷
关键词
Ranks; Overpartitions; Appell–Lerch sums; Rank differences; Theta functions; 11P81; 05A17;
D O I
暂无
中图分类号
学科分类号
摘要
The definitions of the rank and crank for overpartitions were given by Bringmann, Lovejoy and Osburn. Let N¯(s,l;n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{N}(s,l;n)$$\end{document} (resp. M¯(s,l;n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{M}(s,l;n)$$\end{document}, M2¯(s,l;n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{M2}(s,l;n)$$\end{document}) denote the number of overpartitions of n with rank (resp. the first residual crank, the second residual crank) congruent to s modulo l. The rank differences of overpartitions modulo 3, 5, 6, 7 and 10 were determined. In this paper, we establish the generating functions for N¯(s,l;n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{N}(s,l;n)$$\end{document}, M¯(s,l;n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{M}(s,l;n)$$\end{document} and M2¯(s,l;n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{M2}(s,l;n)$$\end{document} with l=4,8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l=4, 8$$\end{document} by utilizing Appell–Lerch sums and theta function identities. Moreover, in light of these generating functions, we obtain some equalities and inequalities on ranks and cranks of overpartitions modulo 4 and 8.
引用
收藏
页码:823 / 844
页数:21
相关论文
共 50 条
  • [1] Ranks, cranks for overpartitions and Appell-Lerch sums
    Bian, Min
    Fang, Houqing
    Huang, Xiao Qian
    Yao, Olivia X. M.
    [J]. RAMANUJAN JOURNAL, 2022, 57 (02): : 823 - 844
  • [2] Dyson’s ranks and Appell–Lerch sums
    Dean Hickerson
    Eric Mortenson
    [J]. Mathematische Annalen, 2017, 367 : 373 - 395
  • [3] Dyson's ranks and Appell-Lerch sums
    Hickerson, Dean
    Mortenson, Eric
    [J]. MATHEMATISCHE ANNALEN, 2017, 367 (1-2) : 373 - 395
  • [4] Arithmetic properties for Appell–Lerch sums
    W. H. Ding
    Ernest X. W. Xia
    [J]. The Ramanujan Journal, 2021, 56 : 763 - 783
  • [5] Mock theta functions and Appell–Lerch sums
    Bin Chen
    [J]. Journal of Inequalities and Applications, 2018
  • [6] Arithmetic properties for Appell-Lerch sums
    Ding, W. H.
    Xia, Ernest X. W.
    [J]. RAMANUJAN JOURNAL, 2021, 56 (03): : 763 - 783
  • [7] TWO CONGRUENCES FOR APPELL-LERCH SUMS
    Chan, Song Heng
    Mao, Renrong
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (01) : 111 - 123
  • [8] Proofs of some conjectures of Chan on Appell–Lerch sums
    Nayandeep Deka Baruah
    Nilufar Mana Begum
    [J]. The Ramanujan Journal, 2020, 51 : 99 - 115
  • [9] Generalizations of Mock Theta Functions and Appell–Lerch Sums
    Su-Ping Cui
    Nancy S. S. Gu
    Dazhao Tang
    [J]. Bulletin of the Iranian Mathematical Society, 2023, 49
  • [10] Mock theta functions and Appell-Lerch sums
    Chen, Bin
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,