The Longest Shortest Fence and Sharp Poincaré–Sobolev Inequalities

被引:0
|
作者
L. Esposito
V. Ferone
B. Kawohl
C. Nitsch
C. Trombetti
机构
[1] Universitá di Salerno,Dipartimento di Matematica e Informatica
[2] Universitá di Napoli Federico II,Dipartimento di Matematica e Applicazioni “R. Caccioppoli”
[3] Complesso Universitario Monte S. Angelo,Mathematisches Institut
[4] Universität zu Köln,undefined
关键词
Equilateral Triangle; Sobolev Inequality; Isosceles Triangle; Terminal Point; Straight Segment;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a long standing conjecture concerning the fencing problem in the plane: among planar convex sets of given area, the disc, and only the disc, maximizes the length of the shortest area-bisecting curve. Although it may look intuitive, the result is by no means trivial since we also prove that among planar convex sets of given area the set which maximizes the length of the shortest bisecting chords is the so-called Auerbach triangle.
引用
收藏
页码:821 / 851
页数:30
相关论文
共 50 条
  • [31] Existence and non-existence of minimizers for Poincaré–Sobolev inequalities
    Rafael D. Benguria
    Cristobal Vallejos
    Hanne Van Den Bosch
    Calculus of Variations and Partial Differential Equations, 2020, 59
  • [32] Bilinear Sobolev–Poincaré Inequalities and Leibniz-Type Rules
    Frédéric Bernicot
    Diego Maldonado
    Kabe Moen
    Virginia Naibo
    The Journal of Geometric Analysis, 2014, 24 : 1144 - 1180
  • [33] Sharp Sobolev inequalities for vector valued maps
    Emmanuel Hebey
    Mathematische Zeitschrift, 2006, 253 : 681 - 708
  • [34] Some general forms of sharp Sobolev inequalities
    Zhu, MJ
    JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 156 (01) : 75 - 120
  • [35] SHARP L(P)-WEIGHTED SOBOLEV INEQUALITIES
    PEREZ, C
    ANNALES DE L INSTITUT FOURIER, 1995, 45 (03) : 809 - &
  • [36] Sharp convex Lorentz-Sobolev inequalities
    Ludwig, Monika
    Xiao, Jie
    Zhang, Gaoyong
    MATHEMATISCHE ANNALEN, 2011, 350 (01) : 169 - 197
  • [37] Sharp Sobolev Inequalities via Projection Averages
    Philipp Kniefacz
    Franz E. Schuster
    The Journal of Geometric Analysis, 2021, 31 : 7436 - 7454
  • [38] The sharp Sobolev and isoperimetric inequalities split twice
    Xiao, Jie
    ADVANCES IN MATHEMATICS, 2007, 211 (02) : 417 - 435
  • [39] IMPROVED POINCAR?-HARDY INEQUALITIES ON CERTAIN SUBSPACES OF THE SOBOLEV SPACE
    Ganguly, Debdip
    Roychowdhury, Prasun
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (08) : 3513 - 3527
  • [40] Dirichlet Forms, Poincaré Inequalities, and the Sobolev Spaces of Korevaar and Schoen
    Pekka Koskela
    Nageswari Shanmugalingam
    Jeremy T. Tyson
    Potential Analysis, 2004, 21 : 241 - 262