Sharp Sobolev Inequalities via Projection Averages

被引:0
|
作者
Philipp Kniefacz
Franz E. Schuster
机构
[1] Vienna University of Technology,
来源
关键词
Sobolev inequalities; Isoperimetric inequalities; Affine invariant inequalities; Convex bodies; 46E35; 26D15;
D O I
暂无
中图分类号
学科分类号
摘要
A family of sharp Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} Sobolev inequalities is established by averaging the length of i-dimensional projections of the gradient of a function. Moreover, it is shown that each of these new inequalities directly implies the classical Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} Sobolev inequality of Aubin and Talenti and that the strongest member of this family is the only affine invariant one among them—the affine Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} Sobolev inequality of Lutwak, Yang, and Zhang. When p=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p = 1$$\end{document}, the entire family of new Sobolev inequalities is extended to functions of bounded variation to also allow for a complete classification of all extremal functions in this case.
引用
收藏
页码:7436 / 7454
页数:18
相关论文
共 50 条
  • [1] Sharp Sobolev Inequalities via Projection Averages
    Kniefacz, Philipp
    Schuster, Franz E.
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (07) : 7436 - 7454
  • [2] Sharp Sobolev inequalities in the presence of a twist
    Collion, Stephane
    Hebey, Emmanuel
    Vaugon, Michel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (06) : 2531 - 2537
  • [3] Sharp Sobolev inequalities of second order
    Emmanuel Hebey
    The Journal of Geometric Analysis, 2003, 13 (1): : 145 - 162
  • [4] Sharp Log-Sobolev inequalities
    Rothaus, OS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (10) : 2903 - 2904
  • [5] Sharp Hardy-Sobolev inequalities
    Filippas, S
    Maz'ya, VG
    Tertikas, A
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (07) : 483 - 486
  • [6] Sobolev improvements on sharp Rellich inequalities
    Barbatis, Gerassimos
    Tertikas, Achilles
    JOURNAL OF SPECTRAL THEORY, 2024, 14 (02) : 641 - 663
  • [7] Sharp Sobolev inequalities in critical dimensions
    Ge, YX
    MICHIGAN MATHEMATICAL JOURNAL, 2003, 51 (01) : 27 - 45
  • [8] Sharp affine Lp Sobolev inequalities
    Lutwak, E
    Yang, D
    Zhang, GY
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2002, 62 (01) : 17 - 38
  • [9] Sharp Sobolev inequalities with interior norms
    Meijun Zhu
    Calculus of Variations and Partial Differential Equations, 1999, 8 : 27 - 43
  • [10] Sharp convex Lorentz–Sobolev inequalities
    Monika Ludwig
    Jie Xiao
    Gaoyong Zhang
    Mathematische Annalen, 2011, 350 : 169 - 197