Sharp Sobolev inequalities with interior norms

被引:0
|
作者
Meijun Zhu
机构
[1] Department of Mathematics,
[2] The University of British Columbia,undefined
[3] Vancouver,undefined
[4] B.C. Canada V6T 1Z2 ,undefined
关键词
Bounded Domain; Sobolev Inequality; Sobolev Embedding; Smooth Bounded Domain; Trace Inequality;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish some new sharp Sobolev inequalities on any smooth bounded domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Omega \subset{\Bbb R}^n$\end{document}. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $S_1$\end{document} and S be the sharp constants corresponding to the Sobolev embedding and trace inequalities respectively. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $n\ge 4$\end{document}, there exist constants \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $A(\Omega)$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $A_1(\Omega)>0$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\forall u \in H^1(\Omega)$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} \[ \|u\|_{2n/(n-2), \Omega}^2 \le 2^{2/n}{S_1} \|\nabla u\|_{2, \Omega}^2 + A(\Omega) \|u\|_{2n/(n-1), \Omega}^2 \] \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} \[ \|u\|^2_{2(n-1)/(n-2),\partial \Omega } \le S \|\nabla u\|_{2, \Omega}^2 + A_1(\Omega) \|u\|_{2n/(n-1),\Omega}^2\,; \] \end{document} If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $n=3$\end{document}, for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $k_3 >3$\end{document}, there exist constants \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $A(\Omega, k_3), A_1(\Omega, k_3)>0 $\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\forall u \in H^1(\Omega)$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} \[ \|u\|^2_{2n/(n-2), \Omega} \le 2^{2/n}{S_1} \cdot \|\nabla u\|_{2, \Omega}^2+ A(\Omega, k_3) \|u\|^2_{k_3, \Omega} \] \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} \[ \|u\|_{2(n-1)/(n-2),\partial \Omega}^2 \le S \|\nabla u\|_{2, \Omega}^2+ A_1(\Omega, k_3) \|u\|^2_{k_3, \Omega}\,. \] \end{document}
引用
收藏
页码:27 / 43
页数:16
相关论文
共 50 条