Sharp Sobolev Inequalities via Projection Averages

被引:0
|
作者
Philipp Kniefacz
Franz E. Schuster
机构
[1] Vienna University of Technology,
来源
关键词
Sobolev inequalities; Isoperimetric inequalities; Affine invariant inequalities; Convex bodies; 46E35; 26D15;
D O I
暂无
中图分类号
学科分类号
摘要
A family of sharp Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} Sobolev inequalities is established by averaging the length of i-dimensional projections of the gradient of a function. Moreover, it is shown that each of these new inequalities directly implies the classical Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} Sobolev inequality of Aubin and Talenti and that the strongest member of this family is the only affine invariant one among them—the affine Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} Sobolev inequality of Lutwak, Yang, and Zhang. When p=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p = 1$$\end{document}, the entire family of new Sobolev inequalities is extended to functions of bounded variation to also allow for a complete classification of all extremal functions in this case.
引用
收藏
页码:7436 / 7454
页数:18
相关论文
共 50 条
  • [31] Sharp Sobolev trace inequalities on Riemannian manifolds with boundaries
    Li, YY
    Zhu, MJ
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1997, 50 (05) : 449 - 487
  • [32] Sharp Sobolev inequalities in Lorentz spaces for a mean oscillation
    Ioku, Norisuke
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (05) : 2944 - 2958
  • [33] Sharp Sobolev inequalities with lower order remainder terms
    Druet, O
    Hebey, E
    Vaugon, M
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 353 (01) : 269 - 289
  • [34] Sharp Hardy inequalities for Sobolev-Bregman forms
    Kijaczko, Michal
    Lenczewska, Julia
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (02) : 549 - 559
  • [35] The Longest Shortest Fence and Sharp Poincaré–Sobolev Inequalities
    L. Esposito
    V. Ferone
    B. Kawohl
    C. Nitsch
    C. Trombetti
    Archive for Rational Mechanics and Analysis, 2012, 206 : 821 - 851
  • [36] The Frank-Lieb approach to sharp Sobolev inequalities
    Case, Jeffrey S.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (03)
  • [37] From brunn-minkowski to sharp sobolev inequalities
    Bobkov, S. G.
    Ledoux, M.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (03) : 369 - 384
  • [38] Sharp logarithmic Sobolev inequalities on gradient solitons and applications
    Carrillo, Jose A.
    Ni, Lei
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2009, 17 (04) : 721 - 753
  • [39] Sharp Sobolev inequalities involving boundary terms revisited
    Zhongwei Tang
    Jingang Xiong
    Ning Zhou
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [40] SHARP AFFINE WEIGHTED Lp SOBOLEV TYPE INEQUALITIES
    Haddad, J.
    Jimenez, C. H.
    Montenegro, M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (04) : 2753 - 2776