The Longest Shortest Fence and Sharp Poincaré–Sobolev Inequalities

被引:0
|
作者
L. Esposito
V. Ferone
B. Kawohl
C. Nitsch
C. Trombetti
机构
[1] Universitá di Salerno,Dipartimento di Matematica e Informatica
[2] Universitá di Napoli Federico II,Dipartimento di Matematica e Applicazioni “R. Caccioppoli”
[3] Complesso Universitario Monte S. Angelo,Mathematisches Institut
[4] Universität zu Köln,undefined
关键词
Equilateral Triangle; Sobolev Inequality; Isosceles Triangle; Terminal Point; Straight Segment;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a long standing conjecture concerning the fencing problem in the plane: among planar convex sets of given area, the disc, and only the disc, maximizes the length of the shortest area-bisecting curve. Although it may look intuitive, the result is by no means trivial since we also prove that among planar convex sets of given area the set which maximizes the length of the shortest bisecting chords is the so-called Auerbach triangle.
引用
收藏
页码:821 / 851
页数:30
相关论文
共 50 条
  • [1] The Longest Shortest Fence and Sharp Poincare-Sobolev Inequalities
    Esposito, L.
    Ferone, V.
    Kawohl, B.
    Nitsch, C.
    Trombetti, C.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 206 (03) : 821 - 851
  • [2] The sharp higher-order Lorentz–Poincaré and Lorentz–Sobolev inequalities in the hyperbolic spaces
    Van Hoang Nguyen
    Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 2133 - 2153
  • [3] Sharp Poincaré and log-Sobolev inequalities for the switch chain on regular bipartite graphs
    Konstantin Tikhomirov
    Pierre Youssef
    Probability Theory and Related Fields, 2023, 185 : 89 - 184
  • [4] On Choquet integrals and Poincar?-Sobolev inequalities
    Harjulehto, Petteri
    Hurri-Syrjanen, Ritva
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 284 (09)
  • [5] Capacitary inradius and Poincaré-Sobolev inequalities
    Bozzola, Francesco
    Brasco, Lorenzo
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2025, 31
  • [6] Poincaré inequalities in weighted Sobolev spaces
    Wan-yi Wang
    Jiong Sun
    Zhi-ming Zheng
    Applied Mathematics and Mechanics, 2006, 27 : 125 - 132
  • [7] A Generalization of Poincaré and Log-Sobolev Inequalities
    Feng-Yu Wang
    Potential Analysis, 2005, 22 (1) : 1 - 15
  • [8] On improved fractional Sobolev-Poincar, inequalities
    Dyda, Bartlomiej
    Ihnatsyeva, Lizaveta
    Vahakangas, Antti V.
    ARKIV FOR MATEMATIK, 2016, 54 (02): : 437 - 454
  • [9] A generalization of poincaré and log-Sobolev inequalities
    Wang F.-Y.
    Potential Analysis, 2005, 22 (1) : 1 - 15
  • [10] Poincar, inequalities and the sharp maximal inequalities with -norms for differential forms
    Lu, Yueming
    Bao, Gejun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,