The Longest Shortest Fence and Sharp Poincaré–Sobolev Inequalities

被引:0
|
作者
L. Esposito
V. Ferone
B. Kawohl
C. Nitsch
C. Trombetti
机构
[1] Universitá di Salerno,Dipartimento di Matematica e Informatica
[2] Universitá di Napoli Federico II,Dipartimento di Matematica e Applicazioni “R. Caccioppoli”
[3] Complesso Universitario Monte S. Angelo,Mathematisches Institut
[4] Universität zu Köln,undefined
关键词
Equilateral Triangle; Sobolev Inequality; Isosceles Triangle; Terminal Point; Straight Segment;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a long standing conjecture concerning the fencing problem in the plane: among planar convex sets of given area, the disc, and only the disc, maximizes the length of the shortest area-bisecting curve. Although it may look intuitive, the result is by no means trivial since we also prove that among planar convex sets of given area the set which maximizes the length of the shortest bisecting chords is the so-called Auerbach triangle.
引用
收藏
页码:821 / 851
页数:30
相关论文
共 50 条
  • [41] Sharp Sobolev Inequalities Involving Boundary Terms
    Y.Y. Li
    M. Zhu
    Geometric & Functional Analysis GAFA, 1998, 8 : 59 - 87
  • [42] On the sharp constants in the regional fractional Sobolev inequalities
    Rupert L. Frank
    Tianling Jin
    Wei Wang
    Partial Differential Equations and Applications, 2025, 6 (2):
  • [43] Sharp trace inequalities on fractional Sobolev spaces
    Pak, Hee Chul
    Park, Young Ja
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (5-6) : 761 - 763
  • [44] Sharp Sobolev inequalities for vector valued maps
    Hebey, Emmanuel
    MATHEMATISCHE ZEITSCHRIFT, 2006, 253 (04) : 681 - 708
  • [45] A NOTE ON EXTREMAL FUNCTIONS FOR SHARP SOBOLEV INEQUALITIES
    Barbosa, Ezequiel R.
    Montenegro, Marcos
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,
  • [46] Symmetrization and Sharp Sobolev Inequalities in Metric Spaces
    Kalis, Jan
    Milman, Mario
    REVISTA MATEMATICA COMPLUTENSE, 2009, 22 (02): : 499 - 515
  • [47] Homogeneous sharp Sobolev inequalities on product manifolds
    Ceccon, J
    Montenegro, M
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 : 277 - 300
  • [48] From Brunn–Minkowski to sharp Sobolev inequalities
    S. G. Bobkov
    M. Ledoux
    Annali di Matematica Pura ed Applicata, 2008, 187 : 369 - 384
  • [49] Self Improving Sobolev-Poincaré Inequalities, Truncation and Symmetrization
    Joaquim Martin
    Mario Milman
    Potential Analysis, 2008, 29 : 391 - 408
  • [50] Some sharp Sobolev inequalities on BV (Rn)
    Dai, Jin
    Mou, Shuang
    AIMS MATHEMATICS, 2022, 7 (09): : 16851 - 16868