共 50 条
Sharp Sobolev Inequalities via Projection Averages
被引:0
|作者:
Philipp Kniefacz
Franz E. Schuster
机构:
[1] Vienna University of Technology,
来源:
关键词:
Sobolev inequalities;
Isoperimetric inequalities;
Affine invariant inequalities;
Convex bodies;
46E35;
26D15;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A family of sharp Lp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^p$$\end{document} Sobolev inequalities is established by averaging the length of i-dimensional projections of the gradient of a function. Moreover, it is shown that each of these new inequalities directly implies the classical Lp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^p$$\end{document} Sobolev inequality of Aubin and Talenti and that the strongest member of this family is the only affine invariant one among them—the affine Lp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^p$$\end{document} Sobolev inequality of Lutwak, Yang, and Zhang. When p=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p = 1$$\end{document}, the entire family of new Sobolev inequalities is extended to functions of bounded variation to also allow for a complete classification of all extremal functions in this case.
引用
收藏
页码:7436 / 7454
页数:18
相关论文