IMPROVED POINCAR?-HARDY INEQUALITIES ON CERTAIN SUBSPACES OF THE SOBOLEV SPACE

被引:0
|
作者
Ganguly, Debdip [1 ]
Roychowdhury, Prasun [2 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, IIT Campus, New Delhi 110016, India
[2] NTU, Natl Ctr Theoret Sci, Math Div, Cosmol Bldg 1,Sec 4,Roosevelt RD, Taipei City 106, Taiwan
关键词
Hardy inequality; hyperbolic space; spherical harmonics; Bessel pair; Caffarelli-Kohn-Nirenberg inequalities; KOHN-NIRENBERG INEQUALITIES; RIEMANNIAN-MANIFOLDS; RELLICH INEQUALITIES;
D O I
10.1090/proc/16357
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an improved version of Poincare '-Hardy inequality in suitable subspaces of the Sobolev space on the hyperbolic space via Bessel pairs. As a consequence, we obtain a new Hardy type inequality with an improved constant (than the usual Hardy constant). Furthermore, we derive a new kind of improved Caffarelli-Kohn-Nirenberg inequality on the hyperbolic space.
引用
收藏
页码:3513 / 3527
页数:15
相关论文
共 50 条
  • [1] On improved fractional Sobolev-Poincar, inequalities
    Dyda, Bartlomiej
    Ihnatsyeva, Lizaveta
    Vahakangas, Antti V.
    ARKIV FOR MATEMATIK, 2016, 54 (02): : 437 - 454
  • [2] Hardy and Sobolev inequalities in the half space
    Y. Mizuta
    T. Shimomura
    Acta Mathematica Hungarica, 2020, 161 : 230 - 244
  • [3] Hardy and Sobolev inequalities in the half space
    Mizuta, Y.
    Shimomura, T.
    ACTA MATHEMATICA HUNGARICA, 2020, 161 (01) : 230 - 244
  • [5] Improved multipolar Poincaré–Hardy inequalities on Cartan–Hadamard manifolds
    Elvise Berchio
    Debdip Ganguly
    Gabriele Grillo
    Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 : 65 - 80
  • [6] IMPROVED HARDY-SOBOLEV INEQUALITIES FOR RADIAL DERIVATIVE
    Wang, Wei-Cang
    Yang, Qiao-Hua
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (01): : 203 - 210
  • [7] Hardy-Poincar?-Sobolev type inequalities on hyperbolic spaces and related Riemannian manifolds
    Flynn, Joshua
    Lam, Nguyen
    Lu, Guozhen
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (12)
  • [8] Poincaré-Sobolev inequalities with rearrangement-invariant norms on the entire space
    Zdeněk Mihula
    Mathematische Zeitschrift, 2021, 298 : 1623 - 1640
  • [9] On Choquet integrals and Poincar?-Sobolev inequalities
    Harjulehto, Petteri
    Hurri-Syrjanen, Ritva
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 284 (09)
  • [10] Capacitary inradius and Poincaré-Sobolev inequalities
    Bozzola, Francesco
    Brasco, Lorenzo
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2025, 31