IMPROVED POINCAR?-HARDY INEQUALITIES ON CERTAIN SUBSPACES OF THE SOBOLEV SPACE

被引:0
|
作者
Ganguly, Debdip [1 ]
Roychowdhury, Prasun [2 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, IIT Campus, New Delhi 110016, India
[2] NTU, Natl Ctr Theoret Sci, Math Div, Cosmol Bldg 1,Sec 4,Roosevelt RD, Taipei City 106, Taiwan
关键词
Hardy inequality; hyperbolic space; spherical harmonics; Bessel pair; Caffarelli-Kohn-Nirenberg inequalities; KOHN-NIRENBERG INEQUALITIES; RIEMANNIAN-MANIFOLDS; RELLICH INEQUALITIES;
D O I
10.1090/proc/16357
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an improved version of Poincare '-Hardy inequality in suitable subspaces of the Sobolev space on the hyperbolic space via Bessel pairs. As a consequence, we obtain a new Hardy type inequality with an improved constant (than the usual Hardy constant). Furthermore, we derive a new kind of improved Caffarelli-Kohn-Nirenberg inequality on the hyperbolic space.
引用
收藏
页码:3513 / 3527
页数:15
相关论文
共 50 条
  • [41] Wandering subspaces and quasi-wandering subspaces in the Hardy-Sobolev spaces
    Xiao, Jie Sheng
    Cao, Guang Fu
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (12) : 1684 - 1692
  • [42] IMPROVED SOBOLEV INEQUALITIES
    STRICHARTZ, RS
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 279 (01) : 397 - 409
  • [43] Geometric Hardy and Hardy-Sobolev inequalities on Heisenberg groups
    Ruzhansky, Michael
    Sabitbek, Bolys
    Suragan, Durvudkhan
    BULLETIN OF MATHEMATICAL SCIENCES, 2020, 10 (03)
  • [44] A Poincaré Inequality in a Sobolev Space with a Variable Exponent
    Philippe G.CIARLET
    George DINCA
    Chinese Annals of Mathematics(Series B), 2011, 32 (03) : 333 - 342
  • [45] A Poincaré inequality in a Sobolev space with a variable exponent
    Philippe G. Ciarlet
    George Dinca
    Chinese Annals of Mathematics, Series B, 2011, 32
  • [46] Hardy-Sobolev Inequalities with Dunkl Weights
    Anh Dao Nguyen
    Duy Nguyen Tuan
    Nguyen Lam Hoang
    Van Phong Nguyen
    ACTA MATHEMATICA VIETNAMICA, 2023, 48 (01) : 133 - 149
  • [47] Missing terms in Hardy-Sobolev inequalities
    Detalla, A
    Horiuchi, T
    Ando, H
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2004, 80 (08) : 160 - 165
  • [48] On the best constant of Hardy-Sobolev inequalities
    Adimurthi
    Filippas, Stathis
    Tertikas, Achilles
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (08) : 2826 - 2833
  • [49] A Note on Generalized Hardy-Sobolev Inequalities
    Anoop, T. V.
    INTERNATIONAL JOURNAL OF ANALYSIS, 2013,
  • [50] Hardy-Sobolev inequalities and hyperbolic symmetry
    Castorina, D.
    Fabbri, I.
    Mancini, G.
    Sandeep, K.
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2008, 19 (03) : 189 - 197