IMPROVED POINCAR?-HARDY INEQUALITIES ON CERTAIN SUBSPACES OF THE SOBOLEV SPACE

被引:0
|
作者
Ganguly, Debdip [1 ]
Roychowdhury, Prasun [2 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, IIT Campus, New Delhi 110016, India
[2] NTU, Natl Ctr Theoret Sci, Math Div, Cosmol Bldg 1,Sec 4,Roosevelt RD, Taipei City 106, Taiwan
关键词
Hardy inequality; hyperbolic space; spherical harmonics; Bessel pair; Caffarelli-Kohn-Nirenberg inequalities; KOHN-NIRENBERG INEQUALITIES; RIEMANNIAN-MANIFOLDS; RELLICH INEQUALITIES;
D O I
10.1090/proc/16357
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an improved version of Poincare '-Hardy inequality in suitable subspaces of the Sobolev space on the hyperbolic space via Bessel pairs. As a consequence, we obtain a new Hardy type inequality with an improved constant (than the usual Hardy constant). Furthermore, we derive a new kind of improved Caffarelli-Kohn-Nirenberg inequality on the hyperbolic space.
引用
收藏
页码:3513 / 3527
页数:15
相关论文
共 50 条
  • [21] Wandering subspaces and quasi-wandering subspaces in the Hardy–Sobolev spaces
    Jie Sheng Xiao
    Guang Fu Cao
    Acta Mathematica Sinica, English Series, 2017, 33 : 1684 - 1692
  • [22] Poincaré–Sobolev equations in the hyperbolic space
    Mousomi Bhakta
    K. Sandeep
    Calculus of Variations and Partial Differential Equations, 2012, 44 : 247 - 269
  • [23] Poincar,-Sobolev equations in the hyperbolic space
    Bhakta, Mousomi
    Sandeep, K.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 44 (1-2) : 247 - 269
  • [24] ON INEQUALITIES OF HARDY-SOBOLEV TYPE
    Balinsky, A.
    Evans, W. D.
    Hundertmark, D.
    Lewis, R. T.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2008, 2 (02): : 94 - 106
  • [25] Hardy and Sobolev inequalities on antisymmetric functions
    Hoffmann-Ostenhof, Th.
    Laptev, A.
    Shcherbakov, I.
    BULLETIN OF MATHEMATICAL SCIENCES, 2024, 14 (01)
  • [26] Sharp Hardy-Sobolev inequalities
    Filippas, S
    Maz'ya, VG
    Tertikas, A
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (07) : 483 - 486
  • [27] Hardy-sobolev interpolation inequalities
    Dietze, Charlotte
    Nam, Phan Thanh
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (07)
  • [28] Critical Hardy-Sobolev inequalities
    Filippas, S.
    Maz'ya, V.
    Terfikas, A.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (01): : 37 - 56
  • [29] Hardy-Sobolev inequalities in a cone
    Nazarov A.I.
    Journal of Mathematical Sciences, 2006, 132 (4) : 419 - 427
  • [30] Hardy's inequalities for Sobolev functions
    Kinnunen, J
    Martio, O
    MATHEMATICAL RESEARCH LETTERS, 1997, 4 (04) : 489 - 500