IMPROVED POINCAR?-HARDY INEQUALITIES ON CERTAIN SUBSPACES OF THE SOBOLEV SPACE

被引:0
|
作者
Ganguly, Debdip [1 ]
Roychowdhury, Prasun [2 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, IIT Campus, New Delhi 110016, India
[2] NTU, Natl Ctr Theoret Sci, Math Div, Cosmol Bldg 1,Sec 4,Roosevelt RD, Taipei City 106, Taiwan
关键词
Hardy inequality; hyperbolic space; spherical harmonics; Bessel pair; Caffarelli-Kohn-Nirenberg inequalities; KOHN-NIRENBERG INEQUALITIES; RIEMANNIAN-MANIFOLDS; RELLICH INEQUALITIES;
D O I
10.1090/proc/16357
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an improved version of Poincare '-Hardy inequality in suitable subspaces of the Sobolev space on the hyperbolic space via Bessel pairs. As a consequence, we obtain a new Hardy type inequality with an improved constant (than the usual Hardy constant). Furthermore, we derive a new kind of improved Caffarelli-Kohn-Nirenberg inequality on the hyperbolic space.
引用
收藏
页码:3513 / 3527
页数:15
相关论文
共 50 条