Multifractal Spectra of Fragmentation Processes

被引:0
|
作者
Julien Berestycki
机构
[1] Université Pierre et Marie Curie et C.N.R.S,Laboratoire de Probabilités et Modèles Aléatoires
来源
关键词
Fragmentation; Galton–Watson trees; multifractal spectra;
D O I
暂无
中图分类号
学科分类号
摘要
Let (S(t),t≥0) be a homogeneous fragmentation of ]0,1[ with no loss of mass. For x∈]0,1[, we say that the fragmentation speed of x is v if and only if, as time passes, the size of the fragment that contains x decays exponentially with rate v. We show that there is vtyp>0 such that almost every point x∈]0,1[ has speed vtyp. Nonetheless, for v in a certain range, the random set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$G$$ \end{document}v of points of speed v, is dense in ]0,1[, and we compute explicitly the spectrum v→Dim(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$G$$ \end{document}v) where Dim is the Hausdorff dimension.
引用
收藏
页码:411 / 430
页数:19
相关论文
共 50 条
  • [1] Multifractal spectra of fragmentation processes
    Berestycki, J
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2003, 113 (3-4) : 411 - 430
  • [2] Multifractal spectra and multifractal rigidity for horseshoes
    Barreira L.
    [J]. Journal of Dynamical and Control Systems, 1997, 3 (1) : 33 - 49
  • [3] Hausdorff, large deviation and Legendre multifractal spectra of Levy multistable processes
    Le Guevel, R.
    Vehel, J. Levy
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (04) : 2032 - 2057
  • [4] Multifractal spectra and multifractal zeta-functions
    V. Mijović
    L. Olsen
    [J]. Aequationes mathematicae, 2017, 91 : 21 - 82
  • [5] Multifractal spectra and multifractal zeta-functions
    Mijovic, V.
    Olsen, L.
    [J]. AEQUATIONES MATHEMATICAE, 2017, 91 (01) : 21 - 82
  • [6] On the completeness of multifractal spectra
    Schmeling, J
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 : 1595 - 1616
  • [7] Computing multifractal spectra
    Kagiso, D.
    Pollicott, M.
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2015, 30 (04): : 404 - 425
  • [8] Dual multifractal spectra
    Roux, S
    Jensen, MH
    [J]. PHYSICAL REVIEW E, 2004, 69 (01): : 6
  • [9] On various multifractal spectra
    Véhel, JL
    Tricot, C
    [J]. FRACTAL GEOMETRY AND STOCHASTICS III, 2004, 57 : 23 - 42
  • [10] MULTIFRACTAL MODEL FOR SOIL AGGREGATE FRAGMENTATION
    PERFECT, E
    KAY, BD
    RASIAH, V
    [J]. SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1993, 57 (04) : 896 - 900