Multifractal spectra and multifractal zeta-functions

被引:1
|
作者
V. Mijović
L. Olsen
机构
[1] University of St. Andrews,Department of Mathematics
来源
Aequationes mathematicae | 2017年 / 91卷
关键词
Multifractals; Zeta functions; Large deviations; Ergodic theory; Hausdorff dimension; Primary 28A78; Secondary 37D30; 37A45;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce multifractal zetafunctions providing precise information of a very general class of multifractal spectra, including, for example, the multifractal spectra of self-conformal measures and the multifractal spectra of ergodic Birkhoff averages of continuous functions. More precisely, we prove that these and more general multifractal spectra equal the abscissae of convergence of the associated zeta-functions.
引用
收藏
页码:21 / 82
页数:61
相关论文
共 50 条
  • [1] Multifractal spectra and multifractal zeta-functions
    Mijovic, V.
    Olsen, L.
    [J]. AEQUATIONES MATHEMATICAE, 2017, 91 (01) : 21 - 82
  • [2] DYNAMICAL MULTIFRACTAL ZETA-FUNCTIONS, MULTIFRACTAL PRESSURE AND FINE MULTIFRACTAL SPECTRA
    Olsen, L.
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2017, 131 : 207 - 253
  • [3] Dynamical multifractal zeta-functions, multifractal pressure and fine multifractal spectra
    L. Olsen
    [J]. Journal d'Analyse Mathématique, 2017, 131 : 207 - 253
  • [4] Dynamical multifractal zeta-functions and fine multifractal spectra of graph-directed self-conformal constructions
    Mijovic, V.
    Olsen, L.
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2016, 36 : 1922 - 1971
  • [5] Fractal Strings and Multifractal Zeta Functions
    Lapidus, Michel L.
    Levy-Vehel, Jacques
    Rock, John A.
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2009, 88 (1-3) : 101 - 129
  • [6] Fractal Strings and Multifractal Zeta Functions
    Michel L. Lapidus
    Jacques Lévy-Véhel
    John A. Rock
    [J]. Letters in Mathematical Physics, 2009, 88 : 101 - 129
  • [7] Multifractal and higher-dimensional zeta functions
    Vehel, Jacques Levy
    Mendivil, Franklin
    [J]. NONLINEARITY, 2011, 24 (01) : 259 - 276
  • [8] Multifractal spectra and multifractal rigidity for horseshoes
    Barreira L.
    [J]. Journal of Dynamical and Control Systems, 1997, 3 (1) : 33 - 49
  • [9] MULTIFRACTAL SPECTRA OF MULTI-AFFINE FUNCTIONS
    BARABASI, AL
    SZEPFALUSY, P
    VICSEK, T
    [J]. PHYSICA A, 1991, 178 (01): : 17 - 28
  • [10] A Generalized Multifractal Formalism for the Estimation of Nonconcave Multifractal Spectra
    Leonarduzzi, Roberto
    Abry, Patrice
    Wendt, Herwig
    Jaffard, Stephane
    Touchette, Hugo
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (01) : 110 - 119