A Generalized Multifractal Formalism for the Estimation of Nonconcave Multifractal Spectra

被引:4
|
作者
Leonarduzzi, Roberto [1 ]
Abry, Patrice [1 ]
Wendt, Herwig [2 ]
Jaffard, Stephane [3 ]
Touchette, Hugo [4 ,5 ]
机构
[1] Univ Claude Bernard, Univ Lyon, ENS Lyon, CNRS,Lab Phys, F-69342 Lyon, France
[2] Univ Toulouse, CNRS UMR 5505, IRIT, F-31000 Toulouse, France
[3] Univ Paris Est, Lab Anal & Math Appl, CNRS UMR 8050, UPEC, F-94010 Creteil, France
[4] Stellenbosch Univ, Natl Inst Theoret Phys NITheP, ZA-7600 Stellenbosch, South Africa
[5] Stellenbosch Univ, Dept Phys, ZA-7600 Stellenbosch, South Africa
关键词
Multifractal analysis; nonconcave multifractal spectrum; wavelet leaders; Legendre transform; generalized canonical ensemble; CLASSIFICATION; BOOTSTRAP; SIGNALS; WALK;
D O I
10.1109/TSP.2018.2879617
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multifractal analysis has become a powerful signal processing tool that characterizes signals or images via the fluctuations of their pointwise regularity, quantified theoretically by the so-called multifractal spectrum. The practical estimation of the multifractal spectrum fundamentally relies on exploiting the scale dependence of statistical properties of appropriate multiscale quantities, such as wavelet leaders, that can be robustly computed from discrete data. Despite successes of multifractal analysis in various real-world applications, current estimation procedures remain essentially limited to providing concave upper-bound estimates, while there is a priori no reason for the multifractal spectrum to be a concave function. This paper addresses this severe practical limitation and proposes a novel formalism for multifractal analysis that enables nonconcave multifractal spectra to be estimated in a stable way. The key contributions reside in the development and theoretical study of a generalized multifractal formalism to assess the multiscale statistics of wavelet leaders, and in devising a practical algorithm that permits this formalism to be applied to real-world data, allowing for the estimation of nonconcave multifractal spectra. Numerical experiments are conducted on several synthetic multifractal processes as well as on a real-world remote-sensing image and demonstrate the benefits of the proposed multifractal formalism over the state of the art.
引用
收藏
页码:110 / 119
页数:10
相关论文
共 50 条
  • [1] GENERALIZED LEGENDRE TRANSFORM MULTIFRACTAL FORMALISM FOR NONCONCAVE SPECTRUM ESTIMATION
    Leonarduzzi, Roberto
    Touchette, Hugo
    Wendt, Herwig
    Abry, Patrice
    Jaffard, Stephane
    [J]. 2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,
  • [2] Complex multifractal measures and a generalized multifractal formalism
    Jezewski, W
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 298 (3-4) : 419 - 430
  • [3] Multifractal Formalism for generalized selfsimilar functions
    BenSlimane, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (09): : 981 - 986
  • [4] A MULTIFRACTAL FORMALISM
    OLSEN, L
    [J]. ADVANCES IN MATHEMATICS, 1995, 116 (01) : 82 - 196
  • [5] ON THE INVERSE MULTIFRACTAL FORMALISM
    Olsen, L.
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2010, 52 : 179 - 194
  • [6] MULTIFRACTAL FORMALISM FOR FUNCTIONS
    JAFFARD, S
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (08): : 745 - 750
  • [7] A vectorial multifractal formalism
    Peyrière, J
    [J]. FRACTAL GEOMETRY AND APPLICATIONS: A JUBILEE OF BENOIT MANDELBROT - MULTIFRACTALS, PROBABILITY AND STATISTICAL MECHANICS, APPLICATIONS, PT 2, 2004, 72 : 217 - 230
  • [8] METHOD OF MATERIAL QUALITY ESTIMATION WITH USAGE OF MULTIFRACTAL FORMALISM
    Volchuk, Volodymyr
    Klymenko, Ievgenii
    Kroviakov, Sergii
    Oreskovic, Matija
    [J]. TEHNICKI GLASNIK-TECHNICAL JOURNAL, 2018, 12 (02): : 93 - 97
  • [9] Multifractal spectra and multifractal rigidity for horseshoes
    Barreira L.
    [J]. Journal of Dynamical and Control Systems, 1997, 3 (1) : 33 - 49
  • [10] Multifractal spectra and multifractal zeta-functions
    V. Mijović
    L. Olsen
    [J]. Aequationes mathematicae, 2017, 91 : 21 - 82