METHOD OF MATERIAL QUALITY ESTIMATION WITH USAGE OF MULTIFRACTAL FORMALISM

被引:5
|
作者
Volchuk, Volodymyr [1 ]
Klymenko, Ievgenii [2 ]
Kroviakov, Sergii [2 ]
Oreskovic, Matija [3 ]
机构
[1] Prydniprovska State Acad Civil Engn & Architectur, Dept Mat Sci, 24a Chernyshevskyst, Dnipro, Ukraine
[2] Odessa State Acad Civil Engn & Architecture, 4 Didrihsona St, Odessa, Ukraine
[3] Sveucilisni Ctr Varazdin, Odjel Graditeljstvo, Jurja Krizanica 31b, Varazhdin 42000, Croatia
来源
TEHNICKI GLASNIK-TECHNICAL JOURNAL | 2018年 / 12卷 / 02期
关键词
cast iron; graphite; mechanical properties; sensitivity coefficient; spectrum of Renyi dimensions; theory of multifractals;
D O I
10.31803/tg-20180302115027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Feasibility of application of multifractal theory for evaluation of materials mechanical properties, cast iron in particular, has been considered. The proposed method enables evaluation of mechanical properties of materials based on determination of their sensitivity to dimensions of structure elements from the multifractal Renyi spectrum. Sensitivity of cast iron ultimate strength to informational dimension of carbides, ultimate bending strength to fractal dimension of carbides, impact strength to correlation dimension of carbides and hardness to fractal dimension of graphite have been determined. Fractal prediction models of quality characteristics of cast iron based on the analysis of the following its structure elements (carbides and graphite) have been received.
引用
收藏
页码:93 / 97
页数:5
相关论文
共 50 条
  • [1] A Generalized Multifractal Formalism for the Estimation of Nonconcave Multifractal Spectra
    Leonarduzzi, Roberto
    Abry, Patrice
    Wendt, Herwig
    Jaffard, Stephane
    Touchette, Hugo
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (01) : 110 - 119
  • [2] A MULTIFRACTAL FORMALISM
    OLSEN, L
    [J]. ADVANCES IN MATHEMATICS, 1995, 116 (01) : 82 - 196
  • [3] Microcanonical multifractal formalism:: Application to the estimation of ocean surface velocities
    Isern-Fontanet, J.
    Turiel, A.
    Garcia-Ladona, E.
    Font, J.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2007, 112 (C5)
  • [4] GENERALIZED LEGENDRE TRANSFORM MULTIFRACTAL FORMALISM FOR NONCONCAVE SPECTRUM ESTIMATION
    Leonarduzzi, Roberto
    Touchette, Hugo
    Wendt, Herwig
    Abry, Patrice
    Jaffard, Stephane
    [J]. 2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,
  • [5] An estimation method of the multifractal spectrum
    Mignot, P
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (07): : 689 - 692
  • [6] ON THE INVERSE MULTIFRACTAL FORMALISM
    Olsen, L.
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2010, 52 : 179 - 194
  • [7] MULTIFRACTAL FORMALISM FOR FUNCTIONS
    JAFFARD, S
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (08): : 745 - 750
  • [8] A vectorial multifractal formalism
    Peyrière, J
    [J]. FRACTAL GEOMETRY AND APPLICATIONS: A JUBILEE OF BENOIT MANDELBROT - MULTIFRACTALS, PROBABILITY AND STATISTICAL MECHANICS, APPLICATIONS, PT 2, 2004, 72 : 217 - 230
  • [9] Complex multifractal measures and a generalized multifractal formalism
    Jezewski, W
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 298 (3-4) : 419 - 430
  • [10] THE MULTIFRACTAL FORMALISM REVISITED WITH WAVELETS
    MUZY, JF
    BACRY, E
    ARNEODO, A
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (02): : 245 - 302